Displaying 201 – 220 of 241

Showing per page

Suboptimal fault tolerant control design with the use of discrete optimization

Zdzisław Kowalczuk, Krzysztof E. Oliński (2008)

International Journal of Applied Mathematics and Computer Science

This paper presents a concept of designing fault tolerant control systems with the use of suboptimal methods. We assume that a given (nonlinear) dynamical process is described in a state space. The method consists in searching (at the off-line stage) for a trajectory of operational points of the system state space. The sought trajectory can be constrained by certain conditions, which can express faults or failures already detected. Within this approach, we are able to use the autonomous dynamics...

Sufficient optimality conditions for multivariable control problems

Andrzej Nowakowski (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study optimal control problems for partial differential equations (focusing on the multidimensional differential equation) with control functions in the Dirichlet boundary conditions under pointwise control (and we admit state - by assuming weak hypotheses) constraints.

Supervisory controller design for timed-place Petri nets

Aydin Aybar, Altuğ İftar (2012)

Kybernetika

Supervisory controller design to avoid deadlock in discrete-event systems modeled by timed-place Petri nets (TPPNs) is considered. The recently introduced approach of place-stretching is utilized for this purpose. In this approach, given an original TPPN (OPN), a new TPPN, called the place-stretched Petri net (PSPN), is obtained. The PSPN has the property that its marking vector is sufficient to represent its state. By using this property, a supervisory controller design approach for TPPNs to avoid...

Supervisory fault tolerant control of the GTM UAV using LPV methods

Tamás Péni, Báltin Vanek, Zoltán Szabó, József Bakor (2015)

International Journal of Applied Mathematics and Computer Science

A multi-level reconfiguration framework is proposed for fault tolerant control of over-actuated aerial vehicles, where the levels indicate how much authority is given to the reconfiguration task. On the lowest, first level the fault is accommodated by modifying only the actuator/sensor configuration, so the fault remains hidden from the baseline controller. A dynamic reallocation scheme is applied on this level. The allocation mechanism exploits the actuator/sensor redundancy available on the aircraft....

Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approach

Hao Yang, Bin Jiang, Vincent Cocquempot, Lingli Lu (2012)

International Journal of Applied Mathematics and Computer Science

This paper focuses on supervisory fault tolerant control design for a class of systems with faults ranging over a finite cover. The proposed framework is based on a switched system approach, and relies on a supervisory switching within a family of pre-computed candidate controllers without individual fault detection and isolation schemes. Each fault set can be accommodated either by one candidate controller or by a set of controllers under an appropriate switching law. Two aircraft examples are...

Supervisory predictive control and on-line set-point optimization

Piotr Tatjewski (2010)

International Journal of Applied Mathematics and Computer Science

The subject of this paper is to discuss selected effective known and novel structures for advanced process control and optimization. The role and techniques of model-based predictive control (MPC) in a supervisory (advanced) control layer are first shortly discussed. The emphasis is put on algorithm efficiency for nonlinear processes and on treating uncertainty in process models, with two solutions presented: the structure of nonlinear prediction and successive linearizations for nonlinear control,...

Supporting locomotive functions of a six-legged walking robot

Krzysztof Walas, Dominik Belter (2011)

International Journal of Applied Mathematics and Computer Science

This paper presents a method for building a foothold selection module as well as methods for the stability check for a multi-legged walking robot. The foothold selection decision maker is shaped automatically, without expert knowledge. The robot learns how to select appropriate footholds by walking on rough terrain or by testing ground primitives. The gathered knowledge is then used to find a relation between slippages and the obtained local shape of the terrain, which is further employed to assess...

Sweep coverage of discrete time multi-robot networks with general topologies

Chao Zhai (2014)

Kybernetika

This paper addresses a sweep coverage problem of multi-robot networks with general topologies. To deal with environmental uncertainties, we present discrete time sweep coverage algorithms to guarantee the complete coverage of the given region by sweeping in parallel with workload partition. Moreover, the error between actual coverage time and the optimal time is estimated with the aid of continuous time results. Finally, numerical simulation is conducted to verify the theoretical results.

Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification

Xiaobing Zhou, Murong Jiang, Yaqun Huang (2014)

Kybernetika

This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation...

Switching control

Enrique Zuazua (2011)

Journal of the European Mathematical Society

We analyze the problem of switching controls for control systems endowed with different actuators. The goal is to control the dynamics of the system by switching from an actuator to the other in a systematic way so that, in each instant of time, only one actuator is active. We first address a finite-dimensional model and show that, under suitable rank conditions, switching control strategies exist and can be built in a systematic way. To do this we introduce a new variational principle building...

Switching LPV control design with MDADT and its application to a morphing aircraft

Yong He, Chunjuan Li, Weiguo Zhang, Jingping Shi, Yongxi Lü (2016)

Kybernetika

In flight control of a morphing aircraft, the design objective and the dynamics may be different in its various configurations. To accommodate different performance goals in different sweep wing configurations, a novel switching strategy, mode dependent average dwell time (MDADT), is adopted to investigate the flight control of a morphing aircraft in its morphing phase. The switching signal used in this note is more general than the average dwell time (ADT), in which each mode has its own ADT. Under...

Symmetries of control systems

Alexey Samokhin (1996)

Banach Center Publications

Symmetries of the control systems of the form u t = f ( t , u , v ) , u n , v m are studied. Some general results concerning point symmetries are obtained. Examples are provided.

Currently displaying 201 – 220 of 241