Previous Page 2

Displaying 21 – 33 of 33

Showing per page

How humans fly

Alain Ajami, Jean-Paul Gauthier, Thibault Maillot, Ulysse Serres (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to the general problem of reconstructing the cost from the observation of trajectories, in a problem of optimal control. It is motivated by the following applied problem, concerning HALE drones: one would like them to decide by themselves for their trajectories, and to behave at least as a good human pilot. This applied question is very similar to the problem of determining what is minimized in human locomotion. These starting points are the reasons for the particular classes...

How to compensate a spreading disturbance for a class of nonlinear systems

Youssef Qaraai, Abdes Samed Bernoussi, Abdelhaq El Jai (2008)

International Journal of Applied Mathematics and Computer Science

We consider a system which is assumed to be affected by an expanding disturbance which occurs at the initial time. The compensation of the disturbance is accomplished by extending the concept of remediability to a class of nonlinear systems. The results are implemented and illustrated with a nonlinear distributed model.

How to get a conservative well-posed linear system out of thin air. Part I. Well-posedness and energy balance

George Weiss, Marius Tucsnak (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Let A 0 be a possibly unbounded positive operator on the Hilbert space H , which is boundedly invertible. Let C 0 be a bounded operator from 𝒟 A 0 1 2 to another Hilbert space U . We prove that the system of equations z ¨ ( t ) + A 0 z ( t ) + 1 2 C 0 * C 0 z ˙ ( t ) = C 0 * u ( t ) y ( t ) ...

How to state necessary optimality conditions for control problems with deviating arguments?

Lassana Samassi, Rabah Tahraoui (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to give a general idea to state optimality conditions of control problems in the following form: inf ( u , v ) 𝒰 a d 0 1 f t , u ( θ v ( t ) ) , u ' ( t ) , v ( t ) d t , (1) where 𝒰 a d is a set of admissible controls and θ v is the solution of the following equation: { d θ ( t ) d t = g ( t , θ ( t ) , v ( t ) ) , t [ 0 , 1 ] ; θ ( 0 ) = θ 0 , θ ( t ) [ 0 , 1 ] t . (2). The results are nonlocal and new.

Hybrid stabilization of discrete-time LTI systems with two quantized signals

Guisheng Zhai, Yuuki Matsumoto, Xinkai Chen, Joe Imae, Tomoaki Kobayashi (2005)

International Journal of Applied Mathematics and Computer Science

We consider stabilizing a discrete-time LTI (linear time-invariant) system via state feedback where both the quantized state and control input signals are involved. The system under consideration is stabilizable and stabilizing state feedback has been designed without considering quantization, but the system's stability is not guaranteed due to the quantization effect. For this reason, we propose a hybrid quantized state feedback strategy asymptotically stabilizing the system, where the values of...

Currently displaying 21 – 33 of 33

Previous Page 2