Previous Page 2

Displaying 21 – 31 of 31

Showing per page

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics

Pascal Morin, Claude Samson (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Exponential stabilization of nonlinear driftless affine control systems is addressed with the concern of achieving robustness with respect to imperfect knowledge of the system's control vector fields. In order to satisfy this robustness requirement, and inspired by Bennani and Rouchon [1] where the same issue was first addressed, we consider a control strategy which consists in applying periodically updated open-loop controls that are continuous with respect to state initial conditions. These...

Extended lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems

Guisheng Zhai, Xuping Xu, Hai Lin, Derong Liu (2007)

International Journal of Applied Mathematics and Computer Science

We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By considering a Lie algebra generated by all subsystem matrices, we show that if all subsystems are Hurwitz/Schur stable and this Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched system is exponentially stable under arbitrary switching. When not all subsystems are stable and the same Lie algebra is solvable, we show...

Currently displaying 21 – 31 of 31

Previous Page 2