Displaying 61 – 80 of 802

Showing per page

A variable structure observer for the control of robot manipulators

Abdelkader Abdessameud, Mohamed Khelfi (2006)

International Journal of Applied Mathematics and Computer Science

This paper deals with the application of a variable structure observer developed for a class of nonlinear systems to solve the trajectory tracking problem for rigid robot manipulators. The analyzed approach to observer design proposes a simple design methodology for systems having completely observable linear parts and bounded nonlinearities andor uncertainties. This observer is basically the conventional Luenberger observer with an additional switching term that is used to guarantee robustness...

Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control

Hartmut Logemann, Ruth F. Curtain (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We derive absolute stability results for well-posed infinite-dimensional systems which, in a sense, extend the well-known circle criterion to the case that the underlying linear system is the series interconnection of an exponentially stable well-posed infinite-dimensional system and an integrator and the nonlinearity ϕ satisfies a sector condition of the form (ϕ(u),ϕ(u) - au) ≤ 0 for some constant a>0. These results are used to prove convergence and stability properties of low-gain integral...

Adaptive control of uncertain nonholonomic systems in finite time

Jiankui Wang, Guoshan Zhang, Hongyi Li (2009)

Kybernetika

In this paper, the finite-time stabilization problem of chained form systems with parametric uncertainties is investigated. A novel switching control strategy is proposed for adaptive finite-time control design with the help of Lyapunov-based method and time-rescaling technique. With the proposed control law, the uncertain closed-loop system under consideration is finite-time stable within a given settling time. An illustrative example is also given to show the effectiveness of the proposed controller....

Adaptive output feedback stabilization for nonlinear systems with unknown polynomial-of-output growth rate and sensor uncertainty

Yanjun Shen, Lei Lin (2022)

Kybernetika

In this paper, the problem of adaptive output feedback stabilization is investigated for a class of nonlinear systems with sensor uncertainty in measured output and a growth rate of polynomial-of-output multiplying an unknown constant in the nonlinear terms. By developing a dual-domination approach, an adaptive observer and an output feedback controller are designed to stabilize the nonlinear system by directly utilizing the measured output with uncertainty. Besides, two types of extension are made...

Adaptive stabilization of coupled PDE–ODE systems with multiple uncertainties

Jian Li, Yungang Liu (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The adaptive stabilization is investigated for a class of coupled PDE-ODE systems with multiple uncertainties. The presence of the multiple uncertainties and the interaction between the sub-systems makes the systems to be considered more general and representative, and moreover it may result in the ineffectiveness of the conventional methods on this topic. Motivated by the existing literature, an infinite-dimensional backsteppping transformation with new kernel functions is first introduced to change...

Algebraic systems theory towards stabilization under parametrical and degree changes in the polynomial matrices of linear mathematical models.

Manuel de la Sen (1988)

Stochastica

This paper deals with the stabilization of the linear time-invariant finite dimensional control problem specified by the following linear spaces and subspaces on C: χ (state space) = χ* ⊕ χd, U (input space) = U1 ⊕ U2, Y (output space) = Y1 + Y2, together with the linear mappings: Qs = χ x U x [0,t} --> χ associated with the evolution equation of the C0-semigroup S(t) generated by the matrices, of real and complex entries A belonging to L(χ,χ) and B belonging to L(U,χ) of a given differential...

Almost sure properties of controlled diffusions and worst case properties of deterministic systems

Martino Bardi, Annalisa Cesaroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We compare a general controlled diffusion process with a deterministic system where a second controller drives the disturbance against the first controller. We show that the two models are equivalent with respect to two properties: the viability (or controlled invariance, or weak invariance) of closed smooth sets, and the existence of a smooth control Lyapunov function ensuring the stabilizability of the system at an equilibrium.


Currently displaying 61 – 80 of 802