Displaying 41 – 60 of 793

Showing per page

A novel LMI-based robust model predictive control for DFIG-based wind energy conversion systems

Amir Gholami, Alireza Sahab, Abdolreza Tavakoli, Behnam Alizadeh (2019)

Kybernetika

The optimal and reliable performance of doubly fed induction generator is essential for the efficient and optimal operation of wind energy conversion systems. This paper considers the nonlinear dynamic of a DFIG linked to a power grid and presents a new robust model predictive control technique of active and reactive power by the use of the linear matrix inequality in DFIG-based WECS. The control law is obtained through the LMI-based model predictive control that allows considering both economic...

A practical solution to implement nonlinear output regulation via dynamic mappings

Carlos Armenta, Jorge Álvarez, Raymundo Márquez, Miguel Bernal (2019)

Kybernetika

This paper presents a novel error-feedback practical solution for real-time implementation of nonlinear output regulation. Sufficient and necessary conditions for both state- and error-feedback output regulation have been established for linear and nonlinear systems several decades ago. In their most general form, these solutions require solving a set of nonlinear partial differential equations, which may be hard or even impossible to solve analytically. In recent years, a methodology for dynamic...

A reduction principle for global stabilization of nonlinear systems

Rachid Outbib, Gauthier Sallet (1998)

Kybernetika

The goal of this paper is to propose new sufficient conditions for dynamic stabilization of nonlinear systems. More precisely, we present a reduction principle for the stabilization of systems that are obtained by adding integrators. This represents a generalization of the well-known lemma on integrators (see for instance [BYIS] or [Tsi1]).

A robust controller design method and stability analysis of an underactuated underwater vehicle

Cheng Siong Chin, Micheal Wai Shing Lau, Eicher Low, Gerald Gim Lee Seet (2006)

International Journal of Applied Mathematics and Computer Science

The problem of designing a stabilizing feedback controller for an underactuated system is a challenging one since a nonlinear system is not stabilizable by a smooth static state feedback law. A necessary condition for the asymptotical stabilization of an underactuated vehicle to a single equilibrium is that its gravitational field has nonzero elements corresponding to unactuated dynamics. However, global asymptotical stability (GAS) cannot be guaranteed. In this paper, a robust proportional-integral-derivative...

A separation principle for the stabilization of a class of time delay nonlinear systems

Amel Benabdallah (2015)

Kybernetika

In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.

A study on decentralized H feedback control systems with local quantizers

Guisheng Zhai, Ning Chen, Weihua Gui (2009)

Kybernetika

In this paper, we study decentralized H feedback control systems with quantized signals in local input-output (control) channels. We first assume that a decentralized output feedback controller has been designed for a multi-channel continuous-time system so that the closed-loop system is Hurwitz stable and a desired H disturbance attenuation level is achieved. However, since the local measurement outputs are quantized by a general quantizer before they are passed to the controller, the system’s...

A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics

Masayasu Suzuki, Noboru Sakamoto (2015)

Kybernetika

In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control...

A tracking controller design with preview action for a class of nonlinear Lur'e systems with time-varying delays and external disturbances

Xiao Yu, Fucheng Liao (2021)

Kybernetika

In this paper, the tracking control problem for a class of discrete-time nonlinear Lur’e systems with time-varying delays and external disturbances is studied via a preview control method. First, a novel translation approach is introduced to construct the augmented error system for Lur’e systems. The output tracking problem is thereby transformed into a guaranteed cost H controller design problem. To produce an integral control action that can eliminate the static error, a discrete integrator is...

A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching

Guisheng Zhai, Xuping Xu (2010)

International Journal of Applied Mathematics and Computer Science

We establish a unified approach to stability analysis for switched linear descriptor systems under arbitrary switching in both continuous-time and discrete-time domains. The approach is based on common quadratic Lyapunov functions incorporated with linear matrix inequalities (LMIs). We show that if there is a common quadratic Lyapunov function for the stability of all subsystems, then the switched system is stable under arbitrary switching. The analysis results are natural extensions of the existing...

Currently displaying 41 – 60 of 793