Reconnaisseurs pour les sous-monoïdes libres
A decomposition of a set of words over a -letter alphabet is any sequence of subsets of such that the sets , are pairwise disjoint, their union is , and for all , , , where denotes the commutative equivalence relation. We introduce some suitable decompositions that we call good, admissible, and normal. A normal decomposition is admissible and an admissible decomposition is good. We prove that a set is commutatively prefix if and only if it has a normal decomposition. In particular,...
A decomposition of a set X of words over a d-letter alphabet A = {a1,...,ad} is any sequence X1,...,Xd,Y1,...,Yd of subsets of A* such that the sets Xi, i = 1,...,d, are pairwise disjoint, their union is X, and for all i, 1 ≤ i ≤ d, Xi ~ aiYi, where ~ denotes the commutative equivalence relation. We introduce some suitable decompositions that we call good, admissible, and normal. A normal decomposition is admissible and an admissible decomposition is good. We prove that a set is commutatively prefix...