The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The intersection dimension of a graph with respect to a class of graphs is the minimum such that is the intersection of some graphs on the vertex set belonging to . In this paper we follow [ Kratochv’ıl J., Tuza Z.: Intersection dimensions of graph classes, Graphs and Combinatorics 10 (1994), 159–168 ] and show that for some pairs of graph classes , the intersection dimension of graphs from with respect to is unbounded.
Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an embedding G into its complement [G̅]. In this note, we consider a problem concerning the uniqueness of such an embedding.
Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V , let c(v) denote the sum of the weight of v ∈ V and of the weights of all edges and all faces incident with v. This vertex coloring of G is proper provided that c(u) ≠ c(v) for any two adjacent vertices u and v of G. We show that for every 2-connected plane graph there is such a proper vertex coloring with weights in {1, 2, 3}. In a special case, the value 3 is improved to 2.
In this note we give a simple proof of a result of Richter and Siran by basic counting method, which says that the crossing number of in a surface with Euler genus ε is
⎣n/(2ε+2)⎦ n - (ε+1)(1+⎣n/(2ε+2)⎦).
A proper vertex coloring of a graph is acyclic if there is no bicolored cycle in . In other words, each cycle of must be colored with at least three colors. Given a list assignment , if there exists an acyclic coloring of such that for all , then we say that is acyclically -colorable. If is acyclically -colorable for any list assignment with for all , then is acyclically -choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles...
A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at least three distinct colours. Acyclic colourings were introduced by Gr¨unbaum in 1973, and since then have...
Within geometric topology of 3-manifolds (with or without boundary), a representation theory exists, which makes use of 4-coloured graphs. Aim of this paper is to translate the homeomorphism problem for the represented manifolds into an equivalence problem for 4-coloured graphs, by means of a finite number of graph-moves, called dipole moves. Moreover, interesting consequences are obtained, which are related with the same problem in the n-dimensional setting.
Currently displaying 21 –
40 of
53