Displaying 21 – 40 of 53

Showing per page

A note on intersection dimensions of graph classes

Petr Hliněný, Aleš Kuběna (1995)

Commentationes Mathematicae Universitatis Carolinae

The intersection dimension of a graph G with respect to a class 𝒜 of graphs is the minimum k such that G is the intersection of some k graphs on the vertex set V ( G ) belonging to 𝒜 . In this paper we follow [ Kratochv’ıl J., Tuza Z.: Intersection dimensions of graph classes, Graphs and Combinatorics 10 (1994), 159–168 ] and show that for some pairs of graph classes 𝒜 , the intersection dimension of graphs from with respect to 𝒜 is unbounded.

A note on uniquely embeddable graphs

Mariusz Woźniak (1998)

Discussiones Mathematicae Graph Theory

Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an embedding G into its complement [G̅]. In this note, we consider a problem concerning the uniqueness of such an embedding.

A Note On Vertex Colorings Of Plane Graphs

Igor Fabricia, Stanislav Jendrol’, Roman Soták (2014)

Discussiones Mathematicae Graph Theory

Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V , let c(v) denote the sum of the weight of v ∈ V and of the weights of all edges and all faces incident with v. This vertex coloring of G is proper provided that c(u) ≠ c(v) for any two adjacent vertices u and v of G. We show that for every 2-connected plane graph there is such a proper vertex coloring with weights in {1, 2, 3}. In a special case, the value 3 is improved to 2.

A proof of the crossing number of K 3 , n in a surface

Pak Tung Ho (2007)

Discussiones Mathematicae Graph Theory

In this note we give a simple proof of a result of Richter and Siran by basic counting method, which says that the crossing number of K 3 , n in a surface with Euler genus ε is ⎣n/(2ε+2)⎦ n - (ε+1)(1+⎣n/(2ε+2)⎦).

Acyclic 4-choosability of planar graphs without 4-cycles

Yingcai Sun, Min Chen (2020)

Czechoslovak Mathematical Journal

A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G . In other words, each cycle of G must be colored with at least three colors. Given a list assignment L = { L ( v ) : v V } , if there exists an acyclic coloring π of G such that π ( v ) L ( v ) for all v V , then we say that G is acyclically L -colorable. If G is acyclically L -colorable for any list assignment L with | L ( v ) | k for all v V , then G is acyclically k -choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles...

Acyclic 6-Colouring of Graphs with Maximum Degree 5 and Small Maximum Average Degree

Anna Fiedorowicz (2013)

Discussiones Mathematicae Graph Theory

A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at least three distinct colours. Acyclic colourings were introduced by Gr¨unbaum in 1973, and since then have...

An equivalence criterion for 3-manifolds.

M. R. Casali (1997)

Revista Matemática de la Universidad Complutense de Madrid

Within geometric topology of 3-manifolds (with or without boundary), a representation theory exists, which makes use of 4-coloured graphs. Aim of this paper is to translate the homeomorphism problem for the represented manifolds into an equivalence problem for 4-coloured graphs, by means of a finite number of graph-moves, called dipole moves. Moreover, interesting consequences are obtained, which are related with the same problem in the n-dimensional setting.

Currently displaying 21 – 40 of 53