The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Median graphs have many interesting properties. One of them is-in connection with triangle free graphs-the recognition complexity. In general the complexity is not very fast, but if we restrict to the planar case the recognition complexity becomes linear. Despite this fact, there is no characterization of planar median graphs in the literature. Here an additional condition is introduced for the convex expansion procedure that characterizes planar median graphs.
In this work, we get a combinatorial characterization for maximal generalized outerplanar graphs (mgo graphs). This result yields a recursive algorithm testing whether a graph is a mgo graph or not.
We prove a theorem guaranteeing special paths of faces in 2-connected plane graphs. As a corollary, we obtain a new proof of Thomassen’s theorem that every 4-connected planar graph is Hamiltonian-connected.
Barnette conjectured that each planar, bipartite, cubic, and 3-connected graph is hamiltonian. We prove that this conjecture is equivalent to the statement that there is a constant c > 0 such that each graph G of this class contains a path on at least c|V (G)| vertices.
Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an edge-disjoint placement of two copies of G into Kₙ. We prove that with the same condition on size of G we have actually (with few exceptions) a careful packing of G, that is an edge-disjoint placement of two copies of G into Kₙ∖Cₙ.
Given a weighting of all elements of a 2-connected plane graph G = (V,E, F), let f(α) denote the sum of the weights of the edges and vertices incident with the face _ and also the weight of _. Such an entire weighting is a proper face colouring provided that f(α) ≠ f(β) for every two faces α and _ sharing an edge. We show that for every 2-connected plane graph there is a proper face-colouring entire weighting with weights 1 through 4. For some families we improved 4 to 3
We show that every 2-connected (2)-Halin graph is Hamiltonian.
Currently displaying 1 –
20 of
53