Displaying 41 – 60 of 468

Showing per page

Acyclic 4-choosability of planar graphs without 4-cycles

Yingcai Sun, Min Chen (2020)

Czechoslovak Mathematical Journal

A proper vertex coloring of a graph G is acyclic if there is no bicolored cycle in G . In other words, each cycle of G must be colored with at least three colors. Given a list assignment L = { L ( v ) : v V } , if there exists an acyclic coloring π of G such that π ( v ) L ( v ) for all v V , then we say that G is acyclically L -colorable. If G is acyclically L -colorable for any list assignment L with | L ( v ) | k for all v V , then G is acyclically k -choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles...

Acyclic 6-Colouring of Graphs with Maximum Degree 5 and Small Maximum Average Degree

Anna Fiedorowicz (2013)

Discussiones Mathematicae Graph Theory

A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at least three distinct colours. Acyclic colourings were introduced by Gr¨unbaum in 1973, and since then have...

An equivalence criterion for 3-manifolds.

M. R. Casali (1997)

Revista Matemática de la Universidad Complutense de Madrid

Within geometric topology of 3-manifolds (with or without boundary), a representation theory exists, which makes use of 4-coloured graphs. Aim of this paper is to translate the homeomorphism problem for the represented manifolds into an equivalence problem for 4-coloured graphs, by means of a finite number of graph-moves, called dipole moves. Moreover, interesting consequences are obtained, which are related with the same problem in the n-dimensional setting.

An inequality concerning edges of minor weight in convex 3-polytopes

Igor Fabrici, Stanislav Jendrol' (1996)

Discussiones Mathematicae Graph Theory

Let e i j be the number of edges in a convex 3-polytope joining the vertices of degree i with the vertices of degree j. We prove that for every convex 3-polytope there is 20 e 3 , 3 + 25 e 3 , 4 + 16 e 3 , 5 + 10 e 3 , 6 + 6 [ 2 / 3 ] e 3 , 7 + 5 e 3 , 8 + 2 [ 1 / 2 ] e 3 , 9 + 2 e 3 , 10 + 16 [ 2 / 3 ] e 4 , 4 + 11 e 4 , 5 + 5 e 4 , 6 + 1 [ 2 / 3 ] e 4 , 7 + 5 [ 1 / 3 ] e 5 , 5 + 2 e 5 , 6 120 ; moreover, each coefficient is the best possible. This result brings a final answer to the conjecture raised by B. Grünbaum in 1973.

An upper bound on the basis number of the powers of the complete graphs

Salar Y. Alsardary (2001)

Czechoslovak Mathematical Journal

The basis number of a graph G is defined by Schmeichel to be the least integer h such that G has an h -fold basis for its cycle space. MacLane showed that a graph is planar if and only if its basis number is 2 . Schmeichel proved that the basis number of the complete graph K n is at most 3 . We generalize the result of Schmeichel by showing that the basis number of the d -th power of K n is at most 2 d + 1 .

Currently displaying 41 – 60 of 468