The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 99

Showing per page

A bound on the k -domination number of a graph

Lutz Volkmann (2010)

Czechoslovak Mathematical Journal

Let G be a graph with vertex set V ( G ) , and let k 1 be an integer. A subset D V ( G ) is called a k -dominating set if every vertex v V ( G ) - D has at least k neighbors in D . The k -domination number γ k ( G ) of G is the minimum cardinality of a k -dominating set in G . If G is a graph with minimum degree δ ( G ) k + 1 , then we prove that γ k + 1 ( G ) | V ( G ) | + γ k ( G ) 2 . In addition, we present a characterization of a special class of graphs attaining equality in this inequality.

A characterization of diameter-2-critical graphs with no antihole of length four

Teresa Haynes, Michael Henning (2012)

Open Mathematics

A graph G is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. In this paper we characterize the diameter-2-critical graphs with no antihole of length four, that is, the diameter-2-critical graphs whose complements have no induced 4-cycle. Murty and Simon conjectured that the number of edges in a diameter-2-critical graph of order n is at most n 2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. As a consequence...

A conjecture on cycle-pancyclism in tournaments

Hortensia Galeana-Sánchez, Sergio Rajsbaum (1998)

Discussiones Mathematicae Graph Theory

Let T be a hamiltonian tournament with n vertices and γ a hamiltonian cycle of T. In previous works we introduced and studied the concept of cycle-pancyclism to capture the following question: What is the maximum intersection with γ of a cycle of length k? More precisely, for a cycle Cₖ of length k in T we denote I γ ( C ) = | A ( γ ) A ( C ) | , the number of arcs that γ and Cₖ have in common. Let f ( k , T , γ ) = m a x I γ ( C ) | C T and f(n,k) = minf(k,T,γ)|T is a hamiltonian tournament with n vertices, and γ a hamiltonian cycle of T. In previous papers we gave...

A construction of large graphs of diameter two and given degree from Abelian lifts of dipoles

Dávid Mesežnikov (2012)

Kybernetika

For any d 11 we construct graphs of degree d , diameter 2 , and order 8 25 d 2 + O ( d ) , obtained as lifts of dipoles with voltages in cyclic groups. For Cayley Abelian graphs of diameter two a slightly better result of 9 25 d 2 + O ( d ) has been known [3] but it applies only to special values of degrees d depending on prime powers.

A Different Short Proof of Brooks’ Theorem

Landon Rabern (2014)

Discussiones Mathematicae Graph Theory

Lovász gave a short proof of Brooks’ theorem by coloring greedily in a good order. We give a different short proof by reducing to the cubic case.

A maximum degree theorem for diameter-2-critical graphs

Teresa Haynes, Michael Henning, Lucas Merwe, Anders Yeo (2014)

Open Mathematics

A graph is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Let G be a diameter-2-critical graph of order n. Murty and Simon conjectured that the number of edges in G is at most ⌊n 2/4⌋ and that the extremal graphs are the complete bipartite graphs K ⌊n/2⌋,⌊n/2⌉. Fan [Discrete Math. 67 (1987), 235–240] proved the conjecture for n ≤ 24 and for n = 26, while Füredi [J. Graph Theory 16 (1992), 81–98] proved the conjecture for n > n 0 where n 0 is a...

Currently displaying 1 – 20 of 99

Page 1 Next