Displaying 481 – 500 of 511

Showing per page

Traceability in { K 1 , 4 , K 1 , 4 + e } -free graphs

Wei Zheng, Ligong Wang (2019)

Czechoslovak Mathematical Journal

A graph G is called { H 1 , H 2 , , H k } -free if G contains no induced subgraph isomorphic to any graph H i , 1 i k . We define σ k = min i = 1 k d ( v i ) : { v 1 , , v k } is an independent set of vertices in G . In this paper, we prove that (1) if G is a connected { K 1 , 4 , K 1 , 4 + e } -free graph of order n and σ 3 ( G ) n - 1 , then G is traceable, (2) if G is a 2-connected { K 1 , 4 , K 1 , 4 + e } -free graph of order n and | N ( x 1 ) N ( x 2 ) | + | N ( y 1 ) N ( y 2 ) | n - 1 for any two distinct pairs of non-adjacent vertices { x 1 , x 2 } , { y 1 , y 2 } of G , then G is traceable, i.e., G has a Hamilton path, where K 1 , 4 + e is a graph obtained by joining a pair of non-adjacent vertices in a K 1 , 4 .

Transitive closure and transitive reduction in bidirected graphs

Ouahiba Bessouf, Abdelkader Khelladi, Thomas Zaslavsky (2019)

Czechoslovak Mathematical Journal

In a bidirected graph, an edge has a direction at each end, so bidirected graphs generalize directed graphs. We generalize the definitions of transitive closure and transitive reduction from directed graphs to bidirected graphs by introducing new notions of bipath and bicircuit that generalize directed paths and cycles. We show how transitive reduction is related to transitive closure and to the matroids of the signed graph corresponding to the bidirected graph.

Travel groupoids

Ladislav Nebeský (2006)

Czechoslovak Mathematical Journal

In this paper, by a travel groupoid is meant an ordered pair ( V , * ) such that V is a nonempty set and * is a binary operation on V satisfying the following two conditions for all u , v V : ( u * v ) * u = u ; if ( u * v ) * v = u , then u = v . Let ( V , * ) be a travel groupoid. It is easy to show that if x , y V , then x * y = y if and only if y * x = x . We say that ( V , * ) is on a (finite or infinite) graph G if V ( G ) = V and E ( G ) = { { u , v } u , v V and u u * v = v } . Clearly, every travel groupoid is on exactly one graph. In this paper, some properties of travel groupoids on graphs are studied.

Tricyclic graphs with exactly two main eigenvalues

Xiaoxia Fan, Yanfeng Luo, Xing Gao (2013)

Open Mathematics

An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. Let G 0 be the graph obtained from G by deleting all pendant vertices and δ(G) the minimum degree of vertices of G. In this paper, all connected tricyclic graphs G with δ(G 0) ≥ 2 and exactly two main eigenvalues are determined.

Two operations on a graph preserving the (non)existence of 2-factors in its line graph

Mingqiang An, Hong-Jian Lai, Hao Li, Guifu Su, Runli Tian, Liming Xiong (2014)

Czechoslovak Mathematical Journal

Let G = ( V ( G ) , E ( G ) ) be a graph. Gould and Hynds (1999) showed a well-known characterization of G by its line graph L ( G ) that has a 2-factor. In this paper, by defining two operations, we present a characterization for a graph G to have a 2-factor in its line graph L ( G ) . A graph G is called N 2 -locally connected if for every vertex x V ( G ) , G [ ...

Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs

Éric Sopena (2012)

Discussiones Mathematicae Graph Theory

The oriented chromatic number of an oriented graph G is the minimum order of an oriented graph H such that G admits a homomorphism to H . The oriented chromatic number of an undirected graph G is then the greatest oriented chromatic number of its orientations. In this paper, we introduce the new notion of the upper oriented chromatic number of an undirected graph G, defined as the minimum order of an oriented graph U such that every orientation G of G admits a homomorphism to U . We give some properties...

Variations on a sufficient condition for Hamiltonian graphs

Ahmed Ainouche, Serge Lapiquonne (2007)

Discussiones Mathematicae Graph Theory

Given a 2-connected graph G on n vertices, let G* be its partially square graph, obtained by adding edges uv whenever the vertices u,v have a common neighbor x satisfying the condition N G ( x ) N G [ u ] N G [ v ] , where N G [ x ] = N G ( x ) x . In particular, this condition is satisfied if x does not center a claw (an induced K 1 , 3 ). Clearly G ⊆ G* ⊆ G², where G² is the square of G. For any independent triple X = x,y,z we define σ̅(X) = d(x) + d(y) + d(z) - |N(x) ∩ N(y) ∩ N(z)|. Flandrin et al. proved that a 2-connected graph G is hamiltonian if...

Vertex Colorings without Rainbow Subgraphs

Wayne Goddard, Honghai Xu (2016)

Discussiones Mathematicae Graph Theory

Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if its vertices receive distinct colors. For a graph F, we define the F-upper chromatic number of G as the maximum number of colors that can be used to color the vertices of G such that there is no rainbow copy of F. We present some results on this parameter for certain graph classes. The focus is on the case that F is a star or triangle. For example, we show that the K3-upper chromatic number of any maximal outerplanar...

Vertex-disjoint copies of K¯₄

Ken-ichi Kawarabayashi (2004)

Discussiones Mathematicae Graph Theory

Let G be a graph of order n. Let K¯ₗ be the graph obtained from Kₗ by removing one edge. In this paper, we propose the following conjecture: Let G be a graph of order n ≥ lk with δ(G) ≥ (n-k+1)(l-3)/(l-2)+k-1. Then G has k vertex-disjoint K¯ₗ. This conjecture is motivated by Hajnal and Szemerédi's [6] famous theorem. In this paper, we verify this conjecture for l=4.

Vertex-dominating cycles in 2-connected bipartite graphs

Tomoki Yamashita (2007)

Discussiones Mathematicae Graph Theory

A cycle C is a vertex-dominating cycle if every vertex is adjacent to some vertex of C. Bondy and Fan [4] showed that if G is a 2-connected graph with δ(G) ≥ 1/3(|V(G)| - 4), then G has a vertex-dominating cycle. In this paper, we prove that if G is a 2-connected bipartite graph with partite sets V₁ and V₂ such that δ(G) ≥ 1/3(max{|V₁|,|V₂|} + 1), then G has a vertex-dominating cycle.

Currently displaying 481 – 500 of 511