The search session has expired. Please query the service again.
A graph is edge cycle extendable if every cycle C that is formed from edges and one chord of a larger cycle C⁺ is also formed from edges and one chord of a cycle C' of length one greater than C with V(C') ⊆ V(C⁺). Edge cycle extendable graphs are characterized by every block being either chordal (every nontriangular cycle has a chord) or chordless (no nontriangular cycle has a chord); equivalently, every chord of a cycle of length five or more has a noncrossing chord.
For two positive integers r and s, 𝓖(n;r,s) denotes to the class of graphs on n vertices containing no r of s-edge disjoint cycles and f(n;r,s) = max{𝓔(G):G ∈ 𝓖(n;r,s)}. In this paper, for integers r ≥ 2 and k ≥ 1, we determine f(n;r,2k+1) and characterize the edge maximal members in 𝓖(n;r,2k+1).
For a simple graph, we consider the minimum number of edges which block all the odd cycles and the maximum number of odd cycles which are pairwise edge-disjoint. When these two coefficients are equal, interesting consequences appear. Similar problems (but interchanging “vertex-disjoint odd cycles” and “edge-disjoint odd cycles”) have been considered in a paper by Berge and Fouquet.
In this paper we consider the following problem. Given an undirected graph G = (V,E) and vertices s₁,t₁;s₂,t₂, the problem is to determine whether or not G admits two edge-disjoint paths P₁ and P₂ connecting s₁ with t₁ and s₂ with t₂, respectively. We give a linear (O(|V|+|E|)) algorithm to solve this problem on a permutation graph.
Disjoint paths have applications in establishing bottleneck-free communication between processors in a network. The problem of finding minimum delay disjoint paths in a network directly reduces to the problem of finding the minimal disjoint paths in the graph which models the network. Previous results for this problem on chordal graphs were an O(|V| |E|²) algorithm for 2 edge disjoint paths and an O(|V| |E|) algorithm for 2 vertex disjoint paths. In this paper, we give an O(|V| |E|) algorithm for...
We prove that a countable connected graph has an end-faithful spanning tree that contains a prescribed set of rays whenever this set is countable, and we show that this solution is, in a certain sense, the best possible. This improves a result of Hahn and Širáň Theorem 1.
For a vertex in a graph , the set consists of those vertices of whose distance from is 2. If a graph contains a set of vertices such that the sets , , form a partition of , then is called a -step domination graph. We describe -step domination graphs possessing some prescribed property. In addition, all -step domination paths and cycles are determined.
Currently displaying 1 –
20 of
22