Minmax strongly connected subgraphs with node penalties.
In this note we give a characterization of the complete bipartite graphs which have an even (odd) [a,b]-factor. For general graphs we prove that an a-edge connected graph G with n vertices and with δ(G) ≥ max{a+1,an/(a+b) + a - 2} has an even [a,b]-factor, where a and b are even and 2 ≤ a ≤ b. With regard to the edge-connectivity this result is slightly better than one of the similar results obtained by Kouider and Vestergaard in 2004 and unlike their results, this result has no restriction on the...
In this paper, we give a generalization of a result of Lovasz from [2].
In this paper, we show that the maximal number of minimal colourings of a graph with vertices and the chromatic number is equal to , and the single graph for which this bound is attained consists of a -clique and isolated vertices.
In this paper we characterize -chromatic graphs without isolated vertices and connected -chromatic graphs having a minimal number of edges.
In a recent paper the authors proposed a lower bound on , where , , is an eigenvalue of a transition matrix of an ergodic Markov chain. The bound, which involved the group inverse of , was derived from a more general bound, due to Bauer, Deutsch, and Stoer, on the eigenvalues of a stochastic matrix other than its constant row sum. Here we adapt the bound to give a lower bound on the algebraic connectivity of an undirected graph, but principally consider the case of equality in the bound when...
For an ordered -decomposition of a connected graph and an edge of , the -code of is the -tuple , where is the distance from to . A decomposition is resolving if every two distinct edges of have distinct -codes. The minimum for which has a resolving -decomposition is its decomposition dimension . A resolving decomposition of is connected if each is connected for . The minimum for which has a connected resolving -decomposition is its connected decomposition...
In this paper, we give some sufficient conditions for distance local connectivity of a graph, and a degree condition for local connectivity of a k-connected graph with large diameter. We study some relationships between t-distance chromatic number and distance local connectivity of a graph and give an upper bound on the t-distance chromatic number of a k-connected graph with diameter d.