The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a simple graph H, →H denotes the class of all graphs that admit homomorphisms to H (such classes of graphs are called hom-properties). We investigate hom-properties from the point of view of the lattice of hereditary properties. In particular, we are interested in characterization of maximal graphs belonging to →H. We also provide a description of graphs maximal with respect to reducible hom-properties and determine the maximum number of edges of graphs belonging to →H.
Let G = (V (G),E(G)) be a nontrivial connected graph of order n with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by...
Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for every set S of k vertices of V (G) is called the k-rainbow index of G, denoted by rxk(G)....
The generalized k-connectivity κk(G) of a graph G, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized k-edge-connectivity λk(G). In this paper, graphs of order n such that [...] for even k are characterized.
The additive stretch number of a graph G is the maximum difference of the lengths of a longest induced path and a shortest induced path between two vertices of G that lie in the same component of G.We prove some properties of minimal forbidden configurations for the induced-hereditary classes of graphs G with for some k ∈ N₀ = 0,1,2,.... Furthermore, we derive characterizations of these classes for k = 1 and k = 2.
The eccentricity of a vertex is the distance from to a vertex farthest from , and is an eccentric vertex for if its distance from is . A vertex of maximum eccentricity in a graph is called peripheral, and the set of all such vertices is the peripherian, denoted . We use to denote the set of eccentric vertices of vertices in . A graph is called an S-graph if . In this paper we characterize S-graphs with diameters less or equal to four, give some constructions of S-graphs and...
We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ℝ2 such that every tile is a triangle and a partial answer to this question is given. A weaker version...
The Grundy number of a graph G is the maximum number k of colors used to color the vertices of G such that the coloring is proper and every vertex x colored with color i, 1 ≤ i ≤ k, is adjacent to (i-1) vertices colored with each color j, 1 ≤ j ≤ i -1. In this paper we give bounds for the Grundy number of some graphs and cartesian products of graphs. In particular, we determine an exact value of this parameter for n-dimensional meshes and some n-dimensional toroidal meshes. Finally, we present an...
Currently displaying 21 –
39 of
39