Page 1 Next

Displaying 1 – 20 of 28

Showing per page

Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties

Ewa Drgas-Burchardt (2009)

Discussiones Mathematicae Graph Theory

An additive hereditary graph property is any class of simple graphs, which is closed under isomorphisms unions and taking subgraphs. Let L a denote a class of all such properties. In the paper, we consider H-reducible over L a properties with H being a fixed graph. The finiteness of the sets of all minimal forbidden graphs is analyzed for such properties.

Characterization of 2 -minimally nonouterplanar join graphs

D. G. Akka, J. K. Bano (2001)

Mathematica Bohemica

In this paper, we present characterizations of pairs of graphs whose join graphs are 2-minimally nonouterplanar. In addition, we present a characterization of pairs of graphs whose join graphs are 2-minimally nonouterplanar in terms of forbidden subgraphs.

Characterization of semientire graphs with crossing number 2

D. G. Akka, J. K. Bano (2002)

Mathematica Bohemica

The purpose of this paper is to give characterizations of graphs whose vertex-semientire graphs and edge-semientire graphs have crossing number 2. In addition, we establish necessary and sufficient conditions in terms of forbidden subgraphs for vertex-semientire graphs and edge-semientire graphs to have crossing number 2.

Characterizations of Graphs Having Large Proper Connection Numbers

Chira Lumduanhom, Elliot Laforge, Ping Zhang (2016)

Discussiones Mathematicae Graph Theory

Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. If P is a proper u − v path of length d(u, v), then P is a proper u − v geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u, v of distinct vertices of G are connected by a proper u − v path in G, and c is a strong proper-path coloring if every two vertices u and v are connected by a proper u− v geodesic in G. The minimum number of...

Characterizations of planar plick graphs

V.R. Kulli, B. Basavanagoud (2004)

Discussiones Mathematicae Graph Theory

In this paper we present characterizations of graphs whose plick graphs are planar, outerplanar and minimally nonouterplanar.

Characterizations of the Family of All Generalized Line Graphs-Finite and Infinite-and Classification of the Family of All Graphs Whose Least Eigenvalues ≥ −2

Gurusamy Rengasamy Vijayakumar (2013)

Discussiones Mathematicae Graph Theory

The infimum of the least eigenvalues of all finite induced subgraphs of an infinite graph is defined to be its least eigenvalue. In [P.J. Cameron, J.M. Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic geometry, J. Algebra 43 (1976) 305-327], the class of all finite graphs whose least eigenvalues ≥ −2 has been classified: (1) If a (finite) graph is connected and its least eigenvalue is at least −2, then either it is a generalized line graph or it is represented by the...

Choice-Perfect Graphs

Zsolt Tuza (2013)

Discussiones Mathematicae Graph Theory

Given a graph G = (V,E) and a set Lv of admissible colors for each vertex v ∈ V (termed the list at v), a list coloring of G is a (proper) vertex coloring ϕ : V → S v2V Lv such that ϕ(v) ∈ Lv for all v ∈ V and ϕ(u) 6= ϕ(v) for all uv ∈ E. If such a ϕ exists, G is said to be list colorable. The choice number of G is the smallest natural number k for which G is list colorable whenever each list contains at least k colors. In this note we initiate the study of graphs in which the choice number equals...

Clique graph representations of ptolemaic graphs

Terry A. Mckee (2010)

Discussiones Mathematicae Graph Theory

A graph is ptolemaic if and only if it is both chordal and distance-hereditary. Thus, a ptolemaic graph G has two kinds of intersection graph representations: one from being chordal, and the other from being distance-hereditary. The first of these, called a clique tree representation, is easily generated from the clique graph of G (the intersection graph of the maximal complete subgraphs of G). The second intersection graph representation can also be generated from the clique graph, as a very special...

Currently displaying 1 – 20 of 28

Page 1 Next