The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
376
The generalized k-connectivity κk(G) of a graph G, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized k-edge-connectivity λk(G). In this paper, graphs of order n such that [...] for even k are characterized.
The additive stretch number of a graph G is the maximum difference of the lengths of a longest induced path and a shortest induced path between two vertices of G that lie in the same component of G.We prove some properties of minimal forbidden configurations for the induced-hereditary classes of graphs G with for some k ∈ N₀ = 0,1,2,.... Furthermore, we derive characterizations of these classes for k = 1 and k = 2.
The eccentricity of a vertex is the distance from to a vertex farthest from , and is an eccentric vertex for if its distance from is . A vertex of maximum eccentricity in a graph is called peripheral, and the set of all such vertices is the peripherian, denoted . We use to denote the set of eccentric vertices of vertices in . A graph is called an S-graph if . In this paper we characterize S-graphs with diameters less or equal to four, give some constructions of S-graphs and...
We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ℝ2 such that every tile is a triangle and a partial answer to this question is given. A weaker version...
The Grundy number of a graph G is the maximum number k of colors used to color the vertices of G such that the coloring is proper and every vertex x colored with color i, 1 ≤ i ≤ k, is adjacent to (i-1) vertices colored with each color j, 1 ≤ j ≤ i -1. In this paper we give bounds for the Grundy number of some graphs and cartesian products of graphs. In particular, we determine an exact value of this parameter for n-dimensional meshes and some n-dimensional toroidal meshes. Finally, we present an...
A graph G is called a split graph if the vertex-set V of G can be partitioned into two subsets V₁ and V₂ such that the subgraphs of G induced by V₁ and V₂ are empty and complete, respectively. In this paper, we characterize hamiltonian graphs in the class of split graphs with minimum degree δ at least |V₁| - 2.
For a given graph G and a positive integer r the r-path graph, , has for vertices the set of all paths of length r in G. Two vertices are adjacent when the intersection of the corresponding paths forms a path of length r-1, and their union forms either a cycle or a path of length k+1 in G. Let be the k-iteration of r-path graph operator on a connected graph G. Let H be a subgraph of . The k-history is a subgraph of G that is induced by all edges that take part in the recursive definition of...
The concept of a line digraph is generalized to that of a directed path graph. The directed path graph Pₖ(D) of a digraph D is obtained by representing the directed paths on k vertices of D by vertices. Two vertices are joined by an arc whenever the corresponding directed paths in D form a directed path on k+1 vertices or form a directed cycle on k vertices in D. In this introductory paper several properties of P₃(D) are studied, in particular with respect to isomorphism and traversability. In our...
Currently displaying 161 –
180 of
376