The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A hypergraph ℋ is a sum hypergraph iff there are a finite S ⊆ ℕ⁺ and d̲,d̅ ∈ ℕ⁺ with 1 < d̲ < d̅ such that ℋ is isomorphic to the hypergraph where V = S and . For an arbitrary hypergraph ℋ the sum number(ℋ ) is defined to be the minimum number of isolatedvertices such that is a sum hypergraph.
For graphs it is known that cycles Cₙ and wheels Wₙ have sum numbersgreater than one. Generalizing these graphs we prove for the hypergraphs ₙ and ₙ that under a certain condition for the edgecardinalities...
A graph is called splitting if there is a 0-1 labelling of its vertices such that for every infinite set C of natural numbers there is a sequence of labels along a 1-way infinite path in the graph whose restriction to C is not eventually constant. We characterize the countable splitting graphs as those containing a subgraph of one of three simple types.
The cutwidth is an important graph-invariant in circuit layout designs. The cutwidth of a graph G is the minimum value of the maximum number of overlap edges when G is embedded into a line. A caterpillar is a tree which yields a path when all its leaves are removed. An iterated caterpillar is a tree which yields a caterpillar when all its leaves are removed. In this paper we present an exact formula for the cutwidth of the iterated caterpillars.
We prove that the cutwidth of the r-dimensional mesh of d-ary trees is of order
, which improves and generalizes previous results.
We examine decompositions of complete graphs with an even number of vertices, , into n isomorphic spanning trees. While methods of such decompositions into symmetric trees have been known, we develop here a more general method based on a new type of vertex labelling, called flexible q-labelling. This labelling is a generalization of labellings introduced by Rosa and Eldergill.
Currently displaying 1 –
10 of
10