The search session has expired. Please query the service again.
A graph is called magic (supermagic) if it admits a labelling of the edges by pairwise different (and consecutive) positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In the paper we prove that any balanced bipartite graph with minimum degree greater than |V(G)|/4 ≥ 2 is magic. A similar result is presented for supermagic regular bipartite graphs.
Necessary and sufficient conditions for a graph that its power , , is a magic graph and one consequence are given.
For a graph G = (V, E), a function f:V(G) → 1,2, ...,k is a k-ranking if f(u) = f(v) implies that every u - v path contains a vertex w such that f(w) > f(u). A k-ranking is minimal if decreasing any label violates the definition of ranking. The arank number, , of G is the maximum value of k such that G has a minimal k-ranking. We completely determine the arank number of the Cartesian product Kₙ ☐ Kₙ, and we investigate the arank number of Kₙ ☐ Kₘ where n > m.
Currently displaying 1 –
4 of
4