The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Improved upper bounds for nearly antipodal chromatic number of paths

Yu-Fa Shen, Guo-Ping Zheng, Wen-Jie HeK (2007)

Discussiones Mathematicae Graph Theory

For paths Pₙ, G. Chartrand, L. Nebeský and P. Zhang showed that a c ' ( P ) n - 2 2 + 2 for every positive integer n, where ac’(Pₙ) denotes the nearly antipodal chromatic number of Pₙ. In this paper we show that a c ' ( P ) n - 2 2 - n / 2 - 10 / n + 7 if n is even positive integer and n ≥ 10, and a c ' ( P ) n - 2 2 - ( n - 1 ) / 2 - 13 / n + 8 if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pₙ.

Currently displaying 1 – 1 of 1

Page 1