The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 1970

Showing per page

A basis of ℤₘ, II

Min Tang, Yong-Gao Chen (2007)

Colloquium Mathematicae

Given a set A ⊂ ℕ let σ A ( n ) denote the number of ordered pairs (a,a’) ∈ A × A such that a + a’ = n. Erdős and Turán conjectured that for any asymptotic basis A of ℕ, σ A ( n ) is unbounded. We show that the analogue of the Erdős-Turán conjecture does not hold in the abelian group (ℤₘ,+), namely, for any natural number m, there exists a set A ⊆ ℤₘ such that A + A = ℤₘ and σ A ( n ̅ ) 5120 for all n̅ ∈ ℤₘ.

A basis of Zₘ

Min Tang, Yong-Gao Chen (2006)

Colloquium Mathematicae

Let σ A ( n ) = | ( a , a ' ) A ² : a + a ' = n | , where n ∈ N and A is a subset of N. Erdős and Turán conjectured that for any basis A of order 2 of N, σ A ( n ) is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which σ A ( n ) is bounded in the square mean. In this paper, we show that there exists a positive integer m₀ such that, for any integer m ≥ m₀, we have a set A ⊂ Zₘ such that A + A = Zₘ and σ A ( n ̅ ) 768 for all n̅ ∈ Zₘ.

A Bogomolov property for curves modulo algebraic subgroups

Philipp Habegger (2009)

Bulletin de la Société Mathématique de France

Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least 2 . The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.

A bound for the average rank of a family of abelian varieties

Rania Wazir (2004)

Bollettino dell'Unione Matematica Italiana

In this note, we consider a one-parameter family of Abelian varieties A / Q T , and find an upper bound for the average rank in terms of the generic rank. This bound is based on Michel's estimates for the average rank in a one-parameter family of Abelian varieties, and extends previous work of Silverman for elliptic surfaces.

Currently displaying 1 – 20 of 1970

Page 1 Next