The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 1528

Showing per page

S -classes infinitésimales d’un corps de nombres algébriques

Jean-François Jaulent (1984)

Annales de l'institut Fourier

Nous introduisons les notions de nombres et d’idéaux infinitésimaux attachés à un corps de nombres algébriques K relativement à un nombre premier donné , et nous interprétons le groupe de Galois 𝒜 ( K ) de la -extension abélienne -ramifiée maximale de K comme quotient du tensorisé Z Z J ( K ) du groupe des idéaux étrangers à par le sous-module engendré par les idéaux principaux-infinitésimaux. Nous en déduisons diverses conséquences sur l’arithmétique des groupes 𝒜 ( K ) , en montrant en particulier qu’ils donnent...

S -integral points on elliptic curves - Notes on a paper of B. M. M. de Weger

Emanuel Herrmann, Attila Pethö (2001)

Journal de théorie des nombres de Bordeaux

In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and p -adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.

S -integral solutions to a Weierstrass equation

Benjamin M. M. de Weger (1997)

Journal de théorie des nombres de Bordeaux

The rational solutions with as denominators powers of 2 to the elliptic diophantine equation y 2 = x 3 - 228 x + 848 are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term ( S -) unit equations with special properties, that are solved by linear forms in real and p -adic logarithms.

Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. Première partie : le groupe G 2

Wee Teck Gan, Jiu-Kang Yu (2003)

Bulletin de la Société Mathématique de France

Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels de type G 2 sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés. Les appendices traitent de l’analogie avec les espaces symétriques réels et des espaces symétriques associés à G 2 réel et complexe.

Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. Deuxième partie : les groupes F 4 et E 6

Wee Teck Gan, Jiu-Kang Yu (2005)

Bulletin de la Société Mathématique de France

Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels des type F 4 ou E 6 sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés.

Currently displaying 1 – 20 of 1528

Page 1 Next