The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
425
Carlitz a défini sur une fonction et une série formelle , analogues respectivement à la fonction de Riemann et au réel . Yu a montré, en utilisant les modules de Drinfeld, que est transcendant pour tout non divisible par . Nous donnons ici une preuve «automatique» de la transcendance de pour , en utilisant le théorème de Christol, Kamae, Mendès France et Rauzy.
Soient le module de Carlitz, un polynôme de et l’ensemble . Nous montrons qu’une fonction entière de type quadratique qui prend des valeurs entières sur , est polynomiale. De plus, la borne est optimale. Ceci est un analogue en caractéristique finie du théorème de Gel’fond-Pólya.
Soit un réel de . Nous étudions le système d’équations de convolution suivantNous démontrons que les exponentielles polynômes solutions de sont denses dans l’espace des solutions du système d’équations; l’idéal de engendré par les transformées de Fourier des deux mesures intervenant ici est “slowly decreasing” au sens de Berenstein-Taylor. Lorsque n’est pas un nombre de Liouville, nous montrons qu’il existe un ouvert relativement compact telle que toute solution distribution de régulière...
In a recent work we gave some estimations for exponential sums of the form , where Λ denotes the von Mangoldt function, f a digital function, and β a real parameter. The aim of this work is to show how these results can be used to study the statistical properties of digital functions along prime numbers.
Soit un sous-groupe de rang maximal d’un corps de nombres . On montre qu’une fonction entière, envoyant dans l’anneau des entiers d’une extension finie de , de croissance analytique et arithmétique faibles est un polynôme. Ce résultat étend un théorème bien connu de Pólya. On montre également que ce résultat est à constante près optimal.
Currently displaying 181 –
200 of
425