The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2001 – 2020 of 16591

Showing per page

Bad(s,t) is hyperplane absolute winning

Erez Nesharim, David Simmons (2014)

Acta Arithmetica

J. An proved that for any s,t ≥ 0 such that s + t = 1, Bad (s,t) is (34√2)¯¹-winning for Schmidt's game. We show that using the main lemma from [An] one can derive a stronger result, namely that Bad (s,t) is hyperplane absolute winning in the sense of [BFKRW]. As a consequence, one can deduce the full Hausdorff dimension of Bad (s,t) intersected with certain fractals.

Banach algebra techniques in the theory of arithmetic functions

Lutz G. Lucht (2008)

Acta Mathematica Universitatis Ostraviensis

For infinite discrete additive semigroups X [ 0 , ) we study normed algebras of arithmetic functions g : X endowed with the linear operations and the convolution. In particular, we investigate the problem of scaling the mean deviation of related multiplicative functions for X = log . This involves an extension of Banach algebras of arithmetic functions by introducing weight functions and proving a weighted inversion theorem of Wiener type in the frame of Gelfand’s theory of commutative Banach algebras.

Bartz-Marlewski equation with generalized Lucas components

Hayder R. Hashim (2022)

Archivum Mathematicum

Let { U n } = { U n ( P , Q ) } and { V n } = { V n ( P , Q ) } be the Lucas sequences of the first and second kind respectively at the parameters P 1 and Q { - 1 , 1 } . In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation x 2 - 3 x y + y 2 + x = 0 , where ( x , y ) = ( U i , U j ) or ( V i , V j ) with i , j 1 . Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.

Base change for Bernstein centers of depth zero principal series blocks

Thomas J. Haines (2012)

Annales scientifiques de l'École Normale Supérieure

Let  G be an unramified group over a p -adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for  G and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with Γ 1 ( p ) -level structure initiated by M. Rapoport and the author in [15].

Bases normales d'entiers dans les extensions de Kummer de degré premier

E. J. Gómez Ayala (1994)

Journal de théorie des nombres de Bordeaux

Si F est un corps de nombres, on note 𝔒 F son anneau d’entiers ; si E / F est une extension galoisienne finie de corps de nombres de groupe de Galois G , on appelle base normale de 𝔒 E sur 𝔒 F toute base de 𝔒 E en tant que 𝔒 F -module de la forme a g g G avec a 𝔒 E . On démontre dans ce travail un critère d’existence de base normale d’entiers pour les extensions de Kummer de degré premier, qui permet une construction explicite en cas d’existence ; les principaux outils pour la démonstration sont une formule de Fröhlich pour...

Bases normales relatives en caractéristique positive

Bruno Anglès (2002)

Journal de théorie des nombres de Bordeaux

Dans cet article, nous étudions la structure galoisienne des anneaux d’entiers des corps de fonctions cyclotomiques dans le cas modéré. Nous montrons qu’en général, si le corps de base est de genre plus grand que 1 , ces anneaux ne sont pas libres sur les anneaux de groupes considérés.

Currently displaying 2001 – 2020 of 16591