Solutions rationelles de certaines équations fonctionelles.
We obtain solutions to some conjectures about the nonlinear difference equation More precisely, we get not only a condition under which the equilibrium point of the above equation is globally asymptotically stable but also a condition under which the above equation has a unique positive cycle of prime period two. We also prove some further results.
Let k ∈ ℤ be such that is finite, where . We complete the determination of all solutions to xyz = 1 and x + y + z = k in integers of number fields of degree at most four over ℚ.
Let k ∈ ℤ be such that , where . We determine all solutions to xyz = 1 and x + y + z = k in integers of number fields of degree at most four over ℚ.
We show that if A and B are finite sets of real numbers, then the number of triples (a,b,c) ∈ A × B × (A ∪ B) with a + b = 2c is at most (0.15+o(1))(|A|+|B|)² as |A| + |B| → ∞. As a corollary, if A is antisymmetric (that is, A ∩ (-A) = ∅), then there are at most (0.3+o(1))|A|² triples (a,b,c) with a,b,c ∈ A and a - b = 2c. In the general case where A is not necessarily antisymmetric, we show that the number of triples (a,b,c) with a,b,c ∈ A and a - b = 2c is at most (0.5+o(1))|A|². These estimates...
This article concerns the problem of solving diophantine equations in rational numbers. It traces the way in which the 19th century broke from the centuries-old tradition of the purely algebraic treatment of this problem. Special attention is paid to Sylvester’s work “On Certain Ternary Cubic-Form Equations” (1879–1880), in which the algebraico-geometrical approach was applied to the study of an indeterminate equation of third degree.
Let be a field whose characteristic is not and . We give a simple algorithm to find, given , a nontrivial solution in (if it exists) to the equation . The algorithm requires, in certain cases, the solution of a similar equation with coefficients in ; hence we obtain a recursive algorithm for solving diagonal conics over (using existing algorithms for such equations over ) and over .