The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3521 – 3540 of 16591

Showing per page

Diophantine approximation and special Liouville numbers

Johannes Schleischitz (2013)

Communications in Mathematics

This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers ζ 1 , ζ 2 , ... , ζ k . The approach relies on results on the connection between the set of all s -adic expansions ( s 2 ) of ζ 1 , ζ 2 , ... , ζ k and their associated approximation constants. As an application, explicit construction of real numbers ζ 1 , ζ 2 , ... , ζ k with prescribed approximation properties are deduced and illustrated by Matlab plots.

Diophantine approximation in Banach spaces

Lior Fishman, David Simmons, Mariusz Urbański (2014)

Journal de Théorie des Nombres de Bordeaux

In this paper, we extend the theory of simultaneous Diophantine approximation to infinite dimensions. Moreover, we discuss Dirichlet-type theorems in a very general framework and define what it means for such a theorem to be optimal. We show that optimality is implied by but does not imply the existence of badly approximable points.

Diophantine approximation on algebraic varieties

Michael Nakamaye (1999)

Journal de théorie des nombres de Bordeaux

We present an overview of recent advances in diophantine approximation. Beginning with Roth's theorem, we discuss the Mordell conjecture and then pass on to recent higher dimensional results due to Faltings-Wustholz and to Faltings respectively.

Diophantine approximation on Veech surfaces

Pascal Hubert, Thomas A. Schmidt (2012)

Bulletin de la Société Mathématique de France

We show that Y. Cheung’s general Z -continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an appropriate sense. The saddle connection continued fractions then allow one to recognize certain transcendental...

Currently displaying 3521 – 3540 of 16591