Displaying 361 – 380 of 460

Showing per page

Locally analytic vectors of unitary principal series of  GL 2 ( p )

Ruochuan Liu, Bingyong Xie, Yuancao Zhang (2012)

Annales scientifiques de l'École Normale Supérieure

The p -adic local Langlands correspondence for  GL 2 ( p ) attaches to any 2 -dimensional irreducible p -adic representation V of  G p an admissible unitary representation Π ( V ) of  GL 2 ( p ) . The unitary principal series of  GL 2 ( p ) are those Π ( V ) corresponding to trianguline representations. In this article, for  p > 2 , using the machinery of Colmez, we determine the space of locally analytic vectors Π ( V ) an for all non-exceptional unitary principal series Π ( V ) of  GL 2 ( p ) by proving a conjecture of Emerton.

Local-to-global extensions of representations of fundamental groups

Nicholas M. Katz (1986)

Annales de l'institut Fourier

Let K be a field of characteristic p > 0 , C a proper, smooth, geometrically connected curve over K , and 0 and two K -rational points on C . We show that any representation of the local Galois group at extends to a representation of the fundamental group of C - { 0 , } which is tamely ramified at 0, provided either that K is separately closed or that C is P 1 . In the latter case, we show there exists a unique such extension, called “canonical”, with the property that the image of the geometric fundamental group...

L'octogone régulier et la signature des formes quadratiques entières non singulières

Catherine Bailly, Maria de Jesus Cabral (2003)

Annales de l’institut Fourier

La formule généralisant la loi de réciprocité quadratique de Legendre et exprimant le reste par huit de la signature d'une forme quadratique entière non dégénérée à l'aide d'une somme de Gauss est attribuée par Milnor à Milgram, la faisant remonter à Braun. Le formalisme de Witt la réduit au cas de dimension 1 que Chandrasekharan attribue à Cauchy et Kronecker. Braun soulignait que les preuves de ces formules nécessitent des moyens d'analyse. Une propriété métrique de l'octogone...

Logarithmic density of a sequence of integers and density of its ratio set

Ladislav Mišík, János T. Tóth (2003)

Journal de théorie des nombres de Bordeaux

In the paper sufficient conditions for the ( R ) -density of a set of positive integers in terms of logarithmic densities are given. They differ substantially from those derived previously in terms of asymptotic densities.

Logarithmic derivative of the Euler Γ function in Clifford analysis.

Guy Laville, Louis Randriamihamison (2005)

Revista Matemática Iberoamericana

The logarithmic derivative of the Γ-function, namely the ψ-function, has numerous applications. We define analogous functions in a four dimensional space. We cut lattices and obtain Clifford-valued functions. These functions are holomorphic cliffordian and have similar properties as the ψ-function. These new functions show links between well-known constants: the Eurler gamma constant and some generalisations, ζR(2), ζR(3). We get also the Riemann zeta function and the Epstein zeta functions.

Logarithmic frequency in morphic sequences

Jason P. Bell (2008)

Journal de Théorie des Nombres de Bordeaux

We study the logarithmic frequency of letters and words in morphic sequences and show that this frequency must always exist, answering a question of Allouche and Shallit.

Loi de réciprocité quadratique dans les corps quadratiques imaginaires

Abdelmejid Bayad (1995)

Annales de l'institut Fourier

À partir d’une courbe elliptique définie sur le corps des classes de Hilbert d’un corps quadratique imaginaire K et à multiplicité complexe par l’anneau des entiers de K , on construit des fonctions elliptiques. Nous établissons des formules produits relatives à ces fonctions. De ce fait, nous obtenons une formulation analytique du lemme de Gauss généralisé ainsi qu’une expression explicite pour le symbole quadratique de Legendre défini sur l’anneau des entiers du corps quadratique imaginaire. Comme...

Loi de répartition moyenne des diviseurs des entiers friables

Joseph Basquin (2014)

Journal de Théorie des Nombres de Bordeaux

In this paper we consider an extension to friable integers of the arcsine law for the mean distribution of the divisors of integers, originally due to Deshouillers, Dress and Tenenbaum.We describe the limit law and show that it departs from the arcsine law when the friability parameter u : = log x / log y increases. More precisely, as u , the mean distribution shifts from the arcsine law towards Gaussian behaviour.

Currently displaying 361 – 380 of 460