The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 4481 – 4500 of 16591

Showing per page

Exponent of class group of certain imaginary quadratic fields

Kalyan Chakraborty, Azizul Hoque (2020)

Czechoslovak Mathematical Journal

Let n > 1 be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form x 2 - 2 y n whose ideal class group has an element of order n . This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.

Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions

István Mező (2013)

Open Mathematics

There is a circle of problems concerning the exponential generating function of harmonic numbers. The main results come from Cvijovic, Dattoli, Gosper and Srivastava. In this paper, we extend some of them. Namely, we give the exponential generating function of hyperharmonic numbers indexed by arithmetic progressions; in the sum several combinatorial numbers (like Stirling and Bell numbers) and the hypergeometric function appear.

Exponential polynomial inequalities and monomial sum inequalities in p -Newton sequences

Charles R. Johnson, Carlos Marijuán, Miriam Pisonero, Michael Yeh (2016)

Czechoslovak Mathematical Journal

We consider inequalities between sums of monomials that hold for all p-Newton sequences. This continues recent work in which inequalities between sums of two, two-term monomials were combinatorially characterized (via the indices involved). Our focus is on the case of sums of three, two-term monomials, but this is very much more complicated. We develop and use a theory of exponential polynomial inequalities to give a sufficient condition for general monomial sum inequalities, and use the sufficient...

Exponential sums with coefficients 0 or 1 and concentrated L p norms

B. Anderson, J. M. Ash, R. L. Jones, D. G. Rider, B. Saffari (2007)

Annales de l’institut Fourier

A sum of exponentials of the form f ( x ) = exp 2 π i N 1 x + exp 2 π i N 2 x + + exp 2 π i N m x , where the N k are distinct integers is called an idempotent trigonometric polynomial (because the convolution of f with itself is f ) or, simply, an idempotent. We show that for every p > 1 , and every set E of the torus 𝕋 = / with | E | > 0 , there are idempotents concentrated on E in the L p sense. More precisely, for each p > 1 , there is an explicitly calculated constant C p > 0 so that for each E with | E | > 0 and ϵ > 0 one can find an idempotent f such that the ratio E | f | p / 𝕋 | f | p 1 / p is greater than C p - ϵ . This is in fact...

Exponential Sums with Farey Fractions

Igor E. Shparlinski (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

For positive integers m and N, we estimate the rational exponential sums with denominator m over the reductions modulo m of elements of the set ℱ(N) = {s/r : r,s ∈ ℤ, gcd(r,s) = 1, N ≥ r > s ≥ 1} of Farey fractions of order N (only fractions s/r with gcd(r,m) = 1 are considered).

Currently displaying 4481 – 4500 of 16591