Stark's conjectures and Hilbert's twelfth problem.
In this paper we study the set of statistical cluster points of sequences in -dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in -dimensional spaces too. We also define a notion of -statistical convergence. A sequence is -statistically convergent to a set if is a minimal closed set such that for every the set has density zero. It is shown that every statistically bounded sequence...
This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.
The Steinitz class of a number field extension is an ideal class in the ring of integers of , which, together with the degree of the extension determines the -module structure of . We denote by the set of classes which are Steinitz classes of a tamely ramified -extension of . We will say that those classes are realizable for the group ; it is conjectured that the set of realizable classes is always a group.In this paper we will develop some of the ideas contained in [7] to obtain some...
It is proved that the nth Stern polynomial Bₙ(t) in the sense of Klavžar, Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator of a continued fraction of n terms. This generalizes a result of Graham, Knuth and Patashnik concerning the Stern sequence Bₙ(1). As an application, the degree of Bₙ(t) is expressed in terms of the binary expansion of n.