Stickelberger ideal and signature of circular units.
We give an improvement of a result of J. Martinet on Stickelbergers congruences for the absolute norms of relative discriminants of number fields, by using classical arguments of class field theory.
The existence of a strong spectral gap for quotients of noncompact connected semisimple Lie groups is crucial in many applications. For congruence lattices there are uniform and very good bounds for the spectral gap coming from the known bounds towards the Ramanujan–Selberg conjectures. If has no compact factors then for general lattices a spectral gap can still be established, but there is no uniformity and no effective bounds are known. This note is concerned with the spectral gap for an irreducible...
We use the properties of -adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
Dans cet article, nous introduisons la notion de semi-groupe fortement automatique, qui entraîne la notion d’automaticité des semi-groupes usuelle. On s’intéresse particulièrement aux semi-groupes de développements en base , pour lesquels on obtient un critère de forte automaticité.
This article classifies the strongly modular lattices with longest and second longest possible shadow.