Displaying 921 – 940 of 1340

Showing per page

The sum of divisors of a quadratic form

Lilu Zhao (2014)

Acta Arithmetica

We study the sum τ of divisors of the quadratic form m₁² + m₂² + m₃². Let S ( X ) = 1 m , m , m X τ ( m ² + m ² + m ² ) . We obtain the asymptotic formula S₃(X) = C₁X³logX + C₂X³ + O(X²log⁷X), where C₁,C₂ are two constants. This improves upon the error term O ε ( X 8 / 3 + ε ) obtained by Guo and Zhai (2012).

The summatory function of q -additive functions on pseudo-polynomial sequences

Manfred G. Madritsch (2012)

Journal de Théorie des Nombres de Bordeaux

The present paper deals with the summatory function of functions acting on the digits of an q -ary expansion. In particular let n be a positive integer, then we call n = r = 0 d r ( n ) q r with d r ( n ) { 0 , ... , q - 1 } its q -ary expansion. We call a function f strictly q -additive, if for a given value, it acts only on the digits of its representation, i.e., f ( n ) = r = 0 f d r ( n ) . Let p ( x ) = α 0 x β 0 + + α d x β d with α 0 , α 1 , ... , α d , , α 0 > 0 , β 0 > > β d 1 and at least one β i . Then we call p a pseudo-polynomial.The goal is to prove that for a q -additive function f there exists an ε > 0 such that n N f p ( n ) = μ f N log q ( p ( N ) ) + N F f , β 0 log q ( p ( N ) ) + 𝒪 N 1 - ε , where μ f is the mean of the values of f ...

The Sylow p-Subgroups of Tame Kernels in Dihedral Extensions of Number Fields

Qianqian Cui, Haiyan Zhou (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Let F/E be a Galois extension of number fields with Galois group D 2 . In this paper, we give some expressions for the order of the Sylow p-subgroups of tame kernels of F and some of its subfields containing E, where p is an odd prime. As applications, we give some results about the order of the Sylow p-subgroups when F/E is a Galois extension of number fields with Galois group D 16 .

The tangent complex to the Bloch-Suslin complex

Jean-Louis Cathelineau (2007)

Bulletin de la Société Mathématique de France

Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of SL 2 . The tangent complex to the trilogarithmic complex of Goncharov is also considered.

The tangent function and power residues modulo primes

Zhi-Wei Sun (2023)

Czechoslovak Mathematical Journal

Let p be an odd prime, and let a be an integer not divisible by p . When m is a positive integer with p 1 ( mod 2 m ) and 2 is an m th power residue modulo p , we determine the value of the product k R m ( p ) ( 1 + tan ( π a k / p ) ) , where R m ( p ) = { 0 < k < p : k is an m th power residue modulo p } . In particular, if p = x 2 + 64 y 2 with x , y , then k R 4 ( p ) 1 + tan π a k p = ( - 1 ) y ( - 2 ) ( p - 1 ) / 8 .

The Tate pairing for Abelian varieties over finite fields

Peter Bruin (2011)

Journal de Théorie des Nombres de Bordeaux

In this expository note, we describe an arithmetic pairing associated to an isogeny between Abelian varieties over a finite field. We show that it generalises the Frey–Rück pairing, thereby giving a short proof of the perfectness of the latter.

Currently displaying 921 – 940 of 1340