Displaying 921 – 940 of 1341

Showing per page

The sum of divisors of a quadratic form

Lilu Zhao (2014)

Acta Arithmetica

We study the sum τ of divisors of the quadratic form m₁² + m₂² + m₃². Let S ( X ) = 1 m , m , m X τ ( m ² + m ² + m ² ) . We obtain the asymptotic formula S₃(X) = C₁X³logX + C₂X³ + O(X²log⁷X), where C₁,C₂ are two constants. This improves upon the error term O ε ( X 8 / 3 + ε ) obtained by Guo and Zhai (2012).

The summatory function of q -additive functions on pseudo-polynomial sequences

Manfred G. Madritsch (2012)

Journal de Théorie des Nombres de Bordeaux

The present paper deals with the summatory function of functions acting on the digits of an q -ary expansion. In particular let n be a positive integer, then we call n = r = 0 d r ( n ) q r with d r ( n ) { 0 , ... , q - 1 } its q -ary expansion. We call a function f strictly q -additive, if for a given value, it acts only on the digits of its representation, i.e., f ( n ) = r = 0 f d r ( n ) . Let p ( x ) = α 0 x β 0 + + α d x β d with α 0 , α 1 , ... , α d , , α 0 > 0 , β 0 > > β d 1 and at least one β i . Then we call p a pseudo-polynomial.The goal is to prove that for a q -additive function f there exists an ε > 0 such that n N f p ( n ) = μ f N log q ( p ( N ) ) + N F f , β 0 log q ( p ( N ) ) + 𝒪 N 1 - ε , where μ f is the mean of the values of f ...

The Sylow p-Subgroups of Tame Kernels in Dihedral Extensions of Number Fields

Qianqian Cui, Haiyan Zhou (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Let F/E be a Galois extension of number fields with Galois group D 2 . In this paper, we give some expressions for the order of the Sylow p-subgroups of tame kernels of F and some of its subfields containing E, where p is an odd prime. As applications, we give some results about the order of the Sylow p-subgroups when F/E is a Galois extension of number fields with Galois group D 16 .

The tangent complex to the Bloch-Suslin complex

Jean-Louis Cathelineau (2007)

Bulletin de la Société Mathématique de France

Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of SL 2 . The tangent complex to the trilogarithmic complex of Goncharov is also considered.

The tangent function and power residues modulo primes

Zhi-Wei Sun (2023)

Czechoslovak Mathematical Journal

Let p be an odd prime, and let a be an integer not divisible by p . When m is a positive integer with p 1 ( mod 2 m ) and 2 is an m th power residue modulo p , we determine the value of the product k R m ( p ) ( 1 + tan ( π a k / p ) ) , where R m ( p ) = { 0 < k < p : k is an m th power residue modulo p } . In particular, if p = x 2 + 64 y 2 with x , y , then k R 4 ( p ) 1 + tan π a k p = ( - 1 ) y ( - 2 ) ( p - 1 ) / 8 .

Currently displaying 921 – 940 of 1341