Displaying 1041 – 1060 of 1340

Showing per page

Théorie de Fontaine en égales caractéristiques

Alain Genestier, Vincent Lafforgue (2011)

Annales scientifiques de l'École Normale Supérieure

Les chtoucas locaux sont des analogues en égales caractéristiques des groupes p -divisibles — par exemple on leur associe un module de Tate, qui est un module libre sur l’anneau d’entiers d’un corps local K de caractéristique positive. Nous associons à un chtouca local une structure de Hodge (ou, plus précisément, une structure de Hodge-Pink), ce qui induit un morphisme de périodes analogue à celui construit par Rapoport et Zink. Pour les structures de Hodge-Pink définies sur une extension finie...

Théorie de Voronoï géométrique. Propriétés de finitude pour les familles de réseaux et analogues

Christophe Bavard (2005)

Bulletin de la Société Mathématique de France

Nous développons une théorie de Voronoï géométrique. En l’appliquant aux familles classiques de réseaux euclidiens (par exemple symplectiques ou orthogonaux), nous obtenons notamment de nouveaux résultats de finitude concernant les configurations de vecteurs minimaux et les réseaux particuliers (par exemple parfaits) de ces familles. Les méthodes géométriques introduites sont également illustrées par l’étude d’objets voisins (formes de Humbert) ou analogues (surfaces de Riemann).

Currently displaying 1041 – 1060 of 1340