The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Automata, algebraicity and distribution of sequences of powers

Jean-Paul Allouche, Jean-Marc Deshouillers, Teturo Kamae, Tadahiro Koyanagi (2001)

Annales de l’institut Fourier

Let K be a finite field of characteristic p . Let K ( ( x ) ) be the field of formal Laurent series f ( x ) in x with coefficients in K . That is, f ( x ) = n = n 0 f n x n with n 0 𝐙 and f n K ( n = n 0 , n 0 + 1 , ) . We discuss the distribution of ( { f m } ) m = 0 , 1 , 2 , for f K ( ( x ) ) , where { f } : = n = 0 f n x n K [ [ x ] ] denotes the nonnegative part of f K ( ( x ) ) . This is a little different from the real number case where the fractional part that excludes constant term (digit of order 0) is considered. We give an alternative proof of a result by De Mathan obtaining the generic distribution for f with f n 0 for some n < 0 . This distribution is...

Répartition modulo 1 dans un corps de séries formelles sur un corps fini

Mireille Car (1995)

Acta Arithmetica

Introduction. Soit q une puissance d’un nombre premier p et soit q le corps fini à q éléments. Une certaine analogie entre l’arithmétique de l’anneau ℤ des entiers rationnels et celle de l’anneau q [ T ] a conduit à étendre à q [ T ] de nombreuses questions de l’arithmétique classique. L’équirépartition modulo 1 est une de ces questions. Le corps des nombres réels est alors remplacé par le corps q ( ( T - 1 ) ) des séries de Laurent formelles, complété du corps q ( T ) des fractions rationnelles pour la valuation à l’infini et...

Currently displaying 1 – 20 of 21

Page 1 Next