The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 203

Showing per page

A diophantine equation involving special prime numbers

Stoyan Dimitrov (2023)

Czechoslovak Mathematical Journal

Let [ · ] be the floor function. In this paper, we prove by asymptotic formula that when 1 < c < 3441 2539 , then every sufficiently large positive integer N can be represented in the form N = [ p 1 c ] + [ p 2 c ] + [ p 3 c ] + [ p 4 c ] + [ p 5 c ] , where p 1 , p 2 , p 3 , p 4 , p 5 are primes such that p 1 = x 2 + y 2 + 1 .

A short intervals result for linear equations in two prime variables.

M. B. S. Laporta (1997)

Revista Matemática de la Universidad Complutense de Madrid

Given A and B integers relatively prime, we prove that almost all integers n in an interval of the form [N, N+H], where N exp(1/3+e) ≤ H ≤ N can be written as a sum Ap1 + Bp2 = n, with p1 and p2 primes and e an arbitrary positive constant. This generalizes the results of Perelli et al. (1985) established in the classical case A=B=1 (Goldbach's problem).

Currently displaying 1 – 20 of 203

Page 1 Next