The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 8 of 8

Showing per page

Relative Galois module structure of integers of abelian fields

Nigel P. Byott, Günter Lettl (1996)

Journal de théorie des nombres de Bordeaux

Let L / K be an extension of algebraic number fields, where L is abelian over . In this paper we give an explicit description of the associated order 𝒜 L / K of this extension when K is a cyclotomic field, and prove that o L , the ring of integers of L , is then isomorphic to 𝒜 L / K . This generalizes previous results of Leopoldt, Chan Lim and Bley. Furthermore we show that 𝒜 L / K is the maximal order if L / K is a cyclic and totally wildly ramified extension which is linearly disjoint to ( m ' ) / K , where m ' is the conductor of K .

Currently displaying 1 – 8 of 8

Page 1