The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A -adic version of Stark’s Conjecture at is attributed to J.-P. Serre and stated
(faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and
work of Rubin) on the complex abelian case, we give a new approach to such a conjecture
for real ray-class extensions of totally real number fields. We study the coherence of
our -adic conjecture and then formulate some integral refinements, both alone and in
combination with its complex analogue. A ‘Weak Combined Refined’ version...
For an algebraic number field with -class group of type , the structure of the -class groups of the four unramified cyclic cubic extension fields , , of is calculated with the aid of presentations for the metabelian Galois group of the second Hilbert -class field of . In the case of a quadratic base field it is shown that the structure of the -class groups of the four -fields frequently determines the type of principalization of the -class group of in . This provides...
Currently displaying 1 –
3 of
3