The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a number field with ring of integers . For a fixed prime number and the étale wild kernels are defined as kernels of certain localization maps on the -fold twist of the -adic étale cohomology groups of . These groups are finite and coincide for with the -part of the classical wild kernel . They play a role similar to the -part of the -class group of . For class groups, Galois co-descent in a cyclic extension is described by the ambiguous class formula given by genus theory....
Let be a Galois extension of number fields with Gal and with property that the divisors of are non-ramified in . We denote the ring of integers of by and we study as a -module. In particular we show that the fourth power of the (locally free) class of is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of , together with new determinantal congruences for cyclic group rings and corresponding congruences...
Nous généralisons à certains quotients finis d’un -module noethérien non nécessairement de torsion le classique théorème d’Iwasawa sur l’expression asymptotique du -nombre de classes dans les -extensions. Puis nous illustrons les résultats obtenus en déterminant explicitement les caractères invariants attachés aux -groupes de -classes -infinitésimales dans une tour cyclotomique à partir de quelques paramètres référents et de données galoisiennes simples des extensions considérées. Un outil...
Currently displaying 1 –
15 of
15