The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Dans cette note nous décrivons différentes méthodes utilisées en pratique pour calculer le nombre de classes d'un corps quadratique imaginaire ou réel ainsi que pour calculer le régulateur d'un corps quadratique réel. En particulier nous décrivons l'infrastructure de Shanks ainsi que la méthode sous-exponentielle de McCurley.
Soient où et deux nombres premiers différents tels que , le -corps de classes de Hilbert de , le -corps de classes de Hilbert de et le groupe de Galois de . D’après [4], la -partie du groupe de classes de est de type , par suite contient trois extensions ; . Dans ce papier, on s’interesse au problème de capitulation des -classes d’idéaux de dans
This first part of this paper gives a proof of the main conjecture of Iwasawa theory for abelian base fields, including the case , by Kolyvagin’s method of Euler systems. On the way, one obtains a general result on local units modulo circular units. This is then used to deduce theorems on the order of -parts of -class groups of abelian number fields: first for relative class groups of real fields (again including the case ). As a consequence, a generalization of the Gras conjecture is stated...
For any integer , we provide a parametric family of biquadratic fields with class groups having -rank at least 2. Moreover, in some cases, the -rank is bigger than 4.
2000 Mathematics Subject Classification: Primary: 11D09, 11A55, 11C08, 11R11, 11R29; Secondary: 11R65, 11S40; 11R09.This paper contains proofs of conjectures made in [16] on class number 2 and what this author has dubbed the Euler-Rabinowitsch polynomial for real quadratic fields. As well, we complete the list of Richaud-Degert types given in [16] and show how the behaviour of the Euler-Rabinowitsch polynomials and certain continued fraction expansions come into play in the complete determination...
Currently displaying 1 –
20 of
66