The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a prime number. We say that a number field satisfies the condition when any abelian extension of exponent dividing has a normal integral basis with respect to the ring of -integers. We also say that satisfies when it satisfies for all . It is known that the rationals satisfy for all prime numbers . In this paper, we give a simple condition for a number field to satisfy in terms of the ideal class group of and a “Stickelberger ideal” associated to the Galois group...
In [14] we studied the nonclassical Hopf-Galois module structure of rings of algebraic integers in some tamely ramified extensions of local and global fields, and proved a partial generalisation of Noether’s theorem to this setting. In this paper we consider tame Galois extensions of number fields with group and study in detail the local and global structure of the ring of integers as a module over its associated order in each of the Hopf algebras giving a nonclassical Hopf-Galois structure...
Currently displaying 1 –
3 of
3