The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Hilbert-Speiser number fields and Stickelberger ideals

Humio Ichimura (2009)

Journal de Théorie des Nombres de Bordeaux

Let p be a prime number. We say that a number field F satisfies the condition ( H p n ) when any abelian extension N / F of exponent dividing p n has a normal integral basis with respect to the ring of p -integers. We also say that F satisfies ( H p ) when it satisfies ( H p n ) for all n 1 . It is known that the rationals satisfy ( H p ) for all prime numbers p . In this paper, we give a simple condition for a number field F to satisfy ( H p n ) in terms of the ideal class group of K = F ( ζ p n ) and a “Stickelberger ideal” associated to the Galois group...

Hopf-Galois module structure of tame biquadratic extensions

Paul J. Truman (2012)

Journal de Théorie des Nombres de Bordeaux

In [14] we studied the nonclassical Hopf-Galois module structure of rings of algebraic integers in some tamely ramified extensions of local and global fields, and proved a partial generalisation of Noether’s theorem to this setting. In this paper we consider tame Galois extensions of number fields L / K with group G C 2 × C 2 and study in detail the local and global structure of the ring of integers 𝔒 L as a module over its associated order 𝔄 H in each of the Hopf algebras H giving a nonclassical Hopf-Galois structure...

Currently displaying 1 – 3 of 3

Page 1