Displaying 261 – 280 of 2019

Showing per page

Characteristic of Rings. Prime Fields

Christoph Schwarzweller, Artur Korniłowicz (2015)

Formalized Mathematics

The notion of the characteristic of rings and its basic properties are formalized [14], [39], [20]. Classification of prime fields in terms of isomorphisms with appropriate fields (ℚ or ℤ/p) are presented. To facilitate reasonings within the field of rational numbers, values of numerators and denominators of basic operations over rationals are computed.

Charles Hermite’s stroll through the Galois fields

Catherine Goldstein (2011)

Revue d'histoire des mathématiques

Although everything seems to oppose the two mathematicians, Charles Hermite’s role was crucial in the study and diffusion of Évariste Galois’s results in France during the second half of the nineteenth century. The present article examines that part of Hermite’s work explicitly linked to Galois, the reduction of modular equations in particular. It shows how Hermite’s mathematical convictions—concerning effectiveness or the unity of algebra, analysis and arithmetic—shaped his interpretation of Galois...

Chebyshev polynomials and Pell equations over finite fields

Boaz Cohen (2021)

Czechoslovak Mathematical Journal

We shall describe how to construct a fundamental solution for the Pell equation x 2 - m y 2 = 1 over finite fields of characteristic p 2 . Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation x 2 - m y 2 = n .

Classes de Steinitz d’extensions à groupe de Galois A 4

Marjory Godin, Bouchaïb Sodaïgui (2002)

Journal de théorie des nombres de Bordeaux

Soient k un corps de nombres et 𝒞 l ( k ) son groupe des classes. Une extension de k à groupe de Galois isomorphe au groupe alterné A 4 est dite alternée. Soit E / k une extension cyclique de degré 3 . On calcule la classe de Steinitz, dans 𝒞 l ( k ) , de toute extension alternée contenant E . Sous l’hypothèse que le nombre des classes de k est impair, on détermine l’ensemble de telles classes et on montre que c’est un sous-groupe de 𝒞 l ( k ) lorsque l’anneau des entiers de E est libre sur celui de k ou 3 ne divise pas l’ordre...

Classes et unités des extensions cycliques réelles de degré 4 de 𝐐

Marie-Nicole Gras (1979)

Annales de l'institut Fourier

Soit K une extension cyclique réelle de degré 4 de Q de sous-corps quadratique k . Nous déterminons le nombre de classes et les unités de K puis nous montrons que le problème de la “capitulation” de classes de k dans K est caractérisé par des propriétés élémentaires des unités de K . Nous avons obtenu une table numérique du nombre de classes, des unités ainsi que de l’éventuelle “capitulation” d’une classe, pour tous les corps K de conducteur f < 4000  ; nous en publions ici un extrait.

Clifford semifields

Mridul K. Sen, Sunil K. Maity, Kar-Ping Shum (2004)

Discussiones Mathematicae - General Algebra and Applications

It is well known that a semigroup S is a Clifford semigroup if and only if S is a strong semilattice of groups. We have recently extended this important result from semigroups to semirings by showing that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. In this paper, we introduce the notions of Clifford semidomain and Clifford semifield. Some structure theorems for these semirings are obtained.

Currently displaying 261 – 280 of 2019