Displaying 1361 – 1380 of 2019

Showing per page

Ramification dans le corps des modules

Stéphane Flon (2004)

Annales de l’institut Fourier

Soit f un revêtement de la droite projective défini sur ¯ , de groupe de monodromie G . Soit K le compositum des corps de rationalité des points de branchement f , et M le corps des modules correspondants. Partant du lien entre corps des modules et espaces de Hurwitz, on étudie la géométrie et l’arithmétique de ces espaces et des espaces de configuration de points complétés pour évaluer la ramification dans M / K des mauvaises places de f qui ne divisent pas l’ordre de G , mais où les points de branchements...

Random Galois extensions of Hilbertian fields

Lior Bary-Soroker, Arno Fehm (2013)

Journal de Théorie des Nombres de Bordeaux

Let L be a Galois extension of a countable Hilbertian field K . Although L need not be Hilbertian, we prove that an abundance of large Galois subextensions of L / K are.

Rational Constants of Generic LV Derivations and of Monomial Derivations

Janusz Zieliński (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

We describe the fields of rational constants of generic four-variable Lotka-Volterra derivations. Thus, we determine all rational first integrals of the corresponding systems of differential equations. Such systems play a role in population biology, laser physics and plasma physics. They are also an important part of derivation theory, since they are factorizable derivations. Moreover, we determine the fields of rational constants of a class of monomial derivations.

Real closed exponential fields

Paola D'Aquino, Julia F. Knight, Salma Kuhlmann, Karen Lange (2012)

Fundamenta Mathematicae

Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre’s construction and then analyze the complexity. Ressayre’s construction is canonical once we fix the real closed exponential field R, a residue field section k, and a well ordering ≺ on R. The...

Real commutative algebra. III. Dedekind-Weber-Riemann manifolds.

D. W. Dubois, A. Bukowski (1980)

Revista Matemática Hispanoamericana

The space S of all non-trivial real places on a real function field K|k of trascendence degree one, endowed with a natural topology analogous to that of Dedekind and Weber's Riemann surface, is shown to be a one-dimensional k-analytic manifold, which is homeomorphic with every bounded non-singular real affine model of K|k. The ground field k is an arbitrary ordered, real-closed Cantor field (definition below). The function field K|k is thereby represented as a field of real mappings of S which might...

Realizability and automatic realizability of Galois groups of order 32

Helen Grundman, Tara Smith (2010)

Open Mathematics

This article provides necessary and sufficient conditions for each group of order 32 to be realizable as a Galois group over an arbitrary field. These conditions, given in terms of the number of square classes of the field and the triviality of specific elements in related Brauer groups, are used to derive a variety of automatic realizability results.

Currently displaying 1361 – 1380 of 2019