Cohen-Macaulay and Gorenstein property of rees algebras of non-singular equimultiple prime ideals.
We study when the modifications of the Cohen-Macaulay vertex cover ideal of a graph are Cohen-Macaulay.
Let R be a commutative multiplication ring and let N be a non-zero finitely generated multiplication R-module. We characterize certain prime submodules of N. Also, we show that N is Cohen-Macaulay whenever R is Noetherian.
Let denote an ideal in a Noetherian ring R, and M a finitely generated R-module. We introduce the concept of the cohomological dimension filtration , where c = cd(,M) and denotes the largest submodule of M such that . Some properties of this filtration are investigated. In particular, if (R,) is local and c = dim M, we are able to determine the annihilator of the top local cohomology module , namely . As a consequence, there exists an ideal of R such that . This generalizes the main results...
We describe how the graded minimal resolution of certain semigroup algebras is related to the combinatorics of some simplicial complexes. We obtain characterizations of the Cohen-Macaulay and Gorenstein conditions. The Cohen-Macaulay type is computed from combinatorics. As an application, we compute explicitly the graded minimal resolution of monomial both affine and simplicial projective surfaces.
Let be a commutative Noetherian ring, an ideal of . Let be an integer and an -module such that is minimax for all . We prove that if is (or weakly Laskerian) for all , then the -modules are -cominimax for all and is minimax for . Let be a finitely generated -module. We prove that and are -cominimax for all and whenever is minimax and is (or weakly Laskerian) for all .