Displaying 641 – 660 of 2826

Showing per page

Determining Integer-Valued Polynomials From Their Image

Vadim Ponomarenko (2010)

Actes des rencontres du CIRM

This note summarizes a presentation made at the Third International Meeting on Integer Valued Polynomials and Problems in Commutative Algebra. All the work behind it is joint with Scott T. Chapman, and will appear in [2]. Let Int ( ) represent the ring of polynomials with rational coefficients which are integer-valued at integers. We determine criteria for two such polynomials to have the same image set on .

Diagonalization and rationalization of algebraic Laurent series

Boris Adamczewski, Jason P. Bell (2013)

Annales scientifiques de l'École Normale Supérieure

We prove a quantitative version of a result of Furstenberg [20] and Deligne [14] stating that the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime p the reduction modulo p of the diagonal of a multivariate algebraic power series f with integer coefficients is an algebraic power series of degree at most p A and height at most A p A , where A is an effective constant that only depends on...

Dichte Ringe*

Günther Haugner, Wolfgang Zimmermann (1974)

Mathematische Annalen

Dickson Polynomials that are Permutations

Cipu, Mihai (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 11T06, 13P10.A theorem of S.D. Cohen gives a characterization for Dickson polynomials of the second kind that permutes the elements of a finite field of cardinality the square of the characteristic. Here, a different proof is presented for this result.Research supported by the CERES program of the Ministry of Education, Research and Youth, contract nr. 39/2002.

Differences in sets of lengths of Krull monoids with finite class group

Wolfgang A. Schmid (2005)

Journal de Théorie des Nombres de Bordeaux

Let H be a Krull monoid with finite class group where every class contains some prime divisor. It is known that every set of lengths is an almost arithmetical multiprogression. We investigate which integers occur as differences of these progressions. In particular, we obtain upper bounds for the size of these differences. Then, we apply these results to show that, apart from one known exception, two elementary p -groups have the same system of sets of lengths if and only if they are isomorphic.

Currently displaying 641 – 660 of 2826