Normal Zr-Graded Rings and Normal Cyclic Covers.
Let be an associative unital ring and let be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results.
H. Sharif et C. Woodcock donnent dans [26] une caractérisation des séries formelles à coefficients dans un corps de caractéristique non nulle et algébriques sur ; ils en déduisent simplement l’algébricité du produit de Hadamard ou des diagonales de séries algébriques. (Ces résultats ont aussi été obtenus par T. Harase [14]). Nous donnons ici une démonstration légèrement différente de leur théorème et montrons comment on peut en déduire une généralisation intéressante de la notion de -substitution...
In this paper, we give new characterizations of the --Bézout property of trivial ring extensions. Also, we investigate the transfer of this property to homomorphic images and to finite direct products. Our results generate original examples which enrich the current literature with new examples of non--Bézout --Bézout rings and examples of non--Bézout --Bézout rings.
New cases of the multiplicity conjecture are considered.
This is the summary of the plenary talk I gave in Milan at the XVII Meeting of the Unione Matematica Italiana. We focus on some relevant numerical characters of the standard graded algebras and, in some case, we explain their geometric meaning.