Displaying 1361 – 1380 of 2842

Showing per page

Non-Leibniz algebras with logarithms do not have the trigonometric identity

D. Przeworska-Rolewicz (2000)

Banach Center Publications

Let X be a Leibniz algebra with unit e, i.e. an algebra with a right invertible linear operator D satisfying the Leibniz condition: D(xy) = xDy + (Dx)y for x,y belonging to the domain of D. If logarithmic mappings exist in X, then cosine and sine elements C(x) and S(x) defined by means of antilogarithmic mappings satisfy the Trigonometric Identity, i.e. [ C ( x ) ] 2 + [ S ( x ) ] 2 = e whenever x belongs to the domain of these mappings. The following question arises: Do there exist non-Leibniz algebras with logarithms such that...

Non-transitive generalizations of subdirect products of linearly ordered rings

Jiří Rachůnek, Dana Šalounová (2003)

Czechoslovak Mathematical Journal

Weakly associative lattice rings (wal-rings) are non-transitive generalizations of lattice ordered rings (l-rings). As is known, the class of l-rings which are subdirect products of linearly ordered rings (i.e. the class of f-rings) plays an important role in the theory of l-rings. In the paper, the classes of wal-rings representable as subdirect products of to-rings and ao-rings (both being non-transitive generalizations of the class of f-rings) are characterized and the class of wal-rings having...

Normability of an S-ring.

El-Miloudi Marhrani, Mohamed Aamri (1998)

Collectanea Mathematica

We give some criteria of normability of an S-ring, and we study the properties of its norms.

Note on strongly nil clean elements in rings

Aleksandra Kostić, Zoran Z. Petrović, Zoran S. Pucanović, Maja Roslavcev (2019)

Czechoslovak Mathematical Journal

Let R be an associative unital ring and let a R be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results.

Currently displaying 1361 – 1380 of 2842