Displaying 1441 – 1460 of 2826

Showing per page

On deformation method in invariant theory

Dmitri Panyushev (1997)

Annales de l'institut Fourier

In this paper we relate the deformation method in invariant theory to spherical subgroups. Let G be a reductive group, Z an affine G -variety and H G a spherical subgroup. We show that whenever G / H is affine and its semigroup of weights is saturated, the algebra of H -invariant regular functions on Z has a G -invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of G . The deformation method in its usual form, as developed...

On delta sets and their realizable subsets in Krull monoids with cyclic class groups

Scott T. Chapman, Felix Gotti, Roberto Pelayo (2014)

Colloquium Mathematicae

Let M be a commutative cancellative monoid. The set Δ(M), which consists of all positive integers which are distances between consecutive factorization lengths of elements in M, is a widely studied object in the theory of nonunique factorizations. If M is a Krull monoid with cyclic class group of order n ≥ 3, then it is well-known that Δ(M) ⊆ {1,..., n-2}. Moreover, equality holds for this containment when each class contains a prime divisor from M. In this note, we consider the question of determining...

On domains with ACC on invertible ideals

Stefania Gabelli (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

If A is a domain with the ascending chain condition on (integral) invertible ideals, then the group I ( A ) of its invertible ideals is generated by the set I m ( A ) of maximal invertible ideals. In this note we study some properties of I m ( A ) and we prove that, if I ( A ) is a free group on I m ( A ) , then A is a locally factorial Krull domain.

On endomorphisms of multiplication and comultiplication modules

H. Ansari-Toroghy, F. Farshadifar (2008)

Archivum Mathematicum

Let R be a ring with an identity (not necessarily commutative) and let M be a left R -module. This paper deals with multiplication and comultiplication left R -modules M having right End R ( M ) -module structures.

On f -rings that are not formally real

James J. Madden (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Henriksen and Isbell showed in 1962 that some commutative rings admit total orderings that violate equational laws (in the language of lattice-ordered rings) that are satisfied by all totally-ordered fields. In this paper, we review the work of Henriksen and Isbell on this topic, construct and classify some examples that illustrate this phenomenon using the valuation theory of Hion (in the process, answering a question posed in [E]) and, finally, prove that a base for the equational theory of totally-ordered...

Currently displaying 1441 – 1460 of 2826