Displaying 1941 – 1960 of 2843

Showing per page

Reduction of Power Series in a Polydisc with Respect to a Gröbner Basis

Justyna Szpond (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

We deal with a reduction of power series convergent in a polydisc with respect to a Gröbner basis of a polynomial ideal. The results are applied to proving that a Nash function whose graph is algebraic in a "large enough" polydisc, must be a polynomial. Moreover, we give an effective method for finding this polydisc.

Reductive group actions on affine varieties and their doubling

Dmitri I. Panyushev (1995)

Annales de l'institut Fourier

We study G -actions of the form ( G : X × X * ) , where X * is the dual (to X ) G -variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action ( G : X ) is given. It is shown that the doubled actions have a number of nice properties, if X is spherical or of complexity one.

Regularity and intersections of bracket powers

Neil Epstein (2022)

Czechoslovak Mathematical Journal

Among reduced Noetherian prime characteristic commutative rings, we prove that a regular ring is precisely that where the finite intersection of ideals commutes with taking bracket powers. However, reducedness is essential for this equivalence. Connections are made with Ohm-Rush content theory, intersection-flatness of the Frobenius map, and various flatness criteria.

Regularly weakly based modules over right perfect rings and Dedekind domains

Michal Hrbek, Pavel Růžička (2017)

Czechoslovak Mathematical Journal

A weak basis of a module is a generating set of the module minimal with respect to inclusion. A module is said to be regularly weakly based provided that each of its generating sets contains a weak basis. We study (1) rings over which all modules are regularly weakly based, refining results of Nashier and Nichols, and (2) regularly weakly based modules over Dedekind domains.

Relations between Elements r p l - r and p·1 for a Prime p

Andrzej Prószyński (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

For any positive power n of a prime p we find a complete set of generating relations between the elements [r] = rⁿ - r and p·1 of a unitary commutative ring.

Relations between Elements r²-r

Andrzej Prószyński (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that generating relations between the elements [r] = r²-r of a commutative ring are the following: [r+s] = [r]+[s]+rs[2] and [rs] = r²[s]+s[r].

Currently displaying 1941 – 1960 of 2843