The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 13 of 13

Showing per page

R -équivalence sur les familles de variétés rationnelles et méthode de la descente

Alena Pirutka (2012)

Journal de Théorie des Nombres de Bordeaux

La méthode de la descente a été introduite et développée par Colliot-Thélène et Sansuc. Elle permet d’étudier l’arithmétique de certaines variétés rationnelles. Dans ce texte on montre comment il en résulte que pour certaines familles f : X Y de variétés rationnelles sur un corps local k de caractéristique nulle le nombre des classes de R -équivalence de la fibre X y ( k ) est localement constant quand y varie dans Y ( k ) .

Rationalité et valeurs de fonctions L en cohomologie cristalline

Jean-Yves Étesse (1988)

Annales de l'institut Fourier

Dans l’exposé Bourbaki 409, Katz conjecture la méromorphie p -adique de la fonction L ( X , E , t ) attachée à une variété X lisse sur un corps fini F q ( q = p a ) et à un F -cristal E sur X . Si X est propre et lisse sur F q nous prouvons que L est rationnelle et fournie par l’expression habituelle utilisant l’action du Frobenius sur la cohomologie cristalline à coefficients dans E ; ce résultat n’était connu, via les “conjectures de Weil”, que pour des F -cristaux unités particuliers: ceux provenant d’une représentation de...

Currently displaying 1 – 13 of 13

Page 1