The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 5

Displaying 81 – 100 of 100

Showing per page

Some defective secant varieties to osculating varieties of Veronese surfaces.

Alessandra Bernardi, Maria Virginia Catalisano (2006)

Collectanea Mathematica

We consider the k-osculating varietiesOk,d to the Veronese d?uple embeddings of P2. By studying the Hilbert function of certain zero-dimensional schemes Y ⊂ P2, we find the dimension of Osk,d, the (s?1)th secant varieties of Ok,d, for 3 ≤ s ≤ 6 and s = 9, and we determine whether those secant varieties are defective or not.

The additive group actions on -homology planes

Kayo Masuda, Masayoshi Miyanishi (2003)

Annales de l’institut Fourier

In this article, we prove that a -homology plane X with two algebraically independent G a -actions is isomorphic to either the affine plane or a quotient of an affine hypersurface x y = z m - 1 in the affine 3 -space via a free / m -action, where m is the order of a finite group H 1 ( X ; ) .

The arithmetic of certain del Pezzo surfaces and K3 surfaces

Dong Quan Ngoc Nguyen (2012)

Journal de Théorie des Nombres de Bordeaux

We construct del Pezzo surfaces of degree 4 violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of K 3 surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.

The irregularity of ruled surfaces in three dimensional projective space.

Luis Giraldo, Ignacio Sols (1998)

Collectanea Mathematica

Let S be a ruled surface in P3 with no multiple generators. Let d and q be nonnegative integers. In this paper we determine which pairs (d,q) correspond to the degree and irregularity of a ruled surface, by considering these surfaces as curves in a smooth quadric hypersurface in P5.

The set of points at which a polynomial map is not proper

Zbigniew Jelonek (1993)

Annales Polonici Mathematici

We describe the set of points over which a dominant polynomial map f = ( f 1 , . . . , f n ) : n n is not a local analytic covering. We show that this set is either empty or it is a uniruled hypersurface of degree bounded by ( i = 1 n d e g f i - μ ( f ) ) / ( m i n i = 1 , . . . , n d e g f i ) .

Tilting Bundles on Rational Surfaces and Quasi-Hereditary Algebras

Lutz Hille, Markus Perling (2014)

Annales de l’institut Fourier

Let X be any rational surface. We construct a tilting bundle T on X . Moreover, we can choose T in such way that its endomorphism algebra is quasi-hereditary. In particular, the bounded derived category of coherent sheaves on X is equivalent to the bounded derived category of finitely generated modules over a finite dimensional quasi-hereditary algebra A . The construction starts with a full exceptional sequence of line bundles on X and uses universal extensions. If X is any smooth projective variety...

Twistor transforms of quaternionic functions and orthogonal complex structures

Graziano Gentili, Simon Salamon, Caterina Stoppato (2014)

Journal of the European Mathematical Society

The theory of slice-regular functions of a quaternion variable is applied to the study of orthogonal complex structures on domains Ω of 4 . When Ω is a symmetric slice domain, the twistor transform of such a function is a holomorphic curve in the Klein quadric. The case in which Ω is the complement of a parabola is studied in detail and described by a rational quartic surface in the twistor space P 3 .

Weierstrass Points with First Non-Gap Four on a Double Covering of a Hyperelliptic Curve II

Komeda, Jiryo, Ohbuchi, Akira (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14J26.A 4-semigroup means a numerical semigroup whose minimum positive integer is 4. In [7] we showed that a 4-semigroup with some conditions is the Weierstrass semigroup of a ramification point on a double covering of a hyperelliptic curve. In this paper we prove that the above statement holds for every 4-semigroup.

Welschinger invariants of small non-toric Del Pezzo surfaces

Ilia Itenberg, Viatcheslav Kharlamov, Eugenii Shustin (2013)

Journal of the European Mathematical Society

We give a recursive formula for purely real Welschinger invariants of the following real Del Pezzo surfaces: the projective plane blown up at q real and s 1 pairs of conjugate imaginary points, where q + 2 s 5 , and the real quadric blown up at s 1 pairs of conjugate imaginary points and having non-empty real part. The formula is similar to Vakil’s recursive formula [22] for Gromov–Witten invariants of these surfaces and generalizes our recursive formula [12] for purely real Welschinger invariants of real toric...

Zero-dimensional subschemes of ruled varieties

Edoardo Ballico, Cristiano Bocci, Claudio Fontanari (2004)

Open Mathematics

Here we study zero-dimensional subschemes of ruled varieties, mainly Hirzebruch surfaces and rational normal scrolls, by applying the Horace method and the Terracini method

Currently displaying 81 – 100 of 100

Previous Page 5