Displaying 361 – 380 of 396

Showing per page

Twisted action of the symmetric group on the cohomology of a flag manifold

Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1996)

Banach Center Publications

Classes dual to Schubert cycles constitute a basis on the cohomology ring of the flag manifold F, self-adjoint up to indexation with respect to the intersection form. Here, we study the bilinear form (X,Y) :=〈X·Y, c(F)〉 where X,Y are cocycles, c(F) is the total Chern class of F and〈,〉 is the intersection form. This form is related to a twisted action of the symmetric group of the cohomology ring, and to the degenerate affine Hecke algebra. We give a distinguished basis for this form, which is a...

Twisted gamma filtration and algebras with orthogonal involution

Caroline Junkins (2014)

Open Mathematics

For the Grothendieck group of a split simple linear algebraic group, the twisted γ-filtration provides a useful tool for constructing torsion elements in -rings of twisted flag varieties. In this paper, we construct a non-trivial torsion element in the γ-ring of a complete flag variety twisted by means of a PGO-torsor. This generalizes the construction in the HSpin case previously obtained by Zainoulline.

[unknown]

Andrew R. Linshaw, Gerald W. Schwarz, Bailin Song (0)

Annales de l’institut Fourier

Variétés horosphériques de Fano

Boris Pasquier (2008)

Bulletin de la Société Mathématique de France

Une variété horosphérique est une variété algébrique normale dans laquelle un groupe algébrique réductif opère avec une orbite ouverte fibrée en tores sur une variété de drapeaux. En particulier, les variétés toriques et les variétés de drapeaux sont horosphériques. Dans cet article, on classifie les variétés horosphériques de Fano en termes de certains polytopes rationnels qui généralisent les polytopes réflexifs considérés par V. Batyrev. Puis on obtient une majoration du degré des variétés horosphériques...

Currently displaying 361 – 380 of 396