The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 541 –
560 of
3997
A matrix is -clean provided there exists an idempotent such that and . We get a general criterion of -cleanness for the matrix . Under the -stable range condition, it is shown that is -clean iff . As an application, we prove that the -cleanness and unit-regularity for such matrix over a Dedekind domain coincide for all . The analogous for property is also obtained.
It is well known that a semigroup S is a Clifford semigroup if and only if S is a strong semilattice of groups. We have recently extended this important result from semigroups to semirings by showing that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. In this paper, we introduce the notions of Clifford semidomain and Clifford semifield. Some structure theorems for these semirings are obtained.
Si considerano le estensioni chiuse di un -modulo mediante un -modulo nel caso in cui sia un anello semi-artiniano, cioè un anello con la proprietà che per ogni quoziente sia soc . Tali estensioni sono caratterizzate dal fatto che deve essere un sottomodulo semi-puro di .
We consider rings equipped with a closure operation defined in terms of a collection of commuting idempotents, generalising the idea of a topological closure operation defined on a ring of sets. We establish the basic properties of such rings, consider examples and construction methods, and then concentrate on rings which have a closure operation defined in terms of their lattice of central idempotents.
Let be a field and a finite-dimensional -algebra of global dimension . We construct a triangulated category associated to which, if is hereditary, is triangle equivalent to the cluster category of . When is Hom-finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott. Our results also...
Starting from an arbitrary cluster-tilting object in a 2-Calabi–Yau triangulated category over an algebraically closed field, as in the setting of Keller and Reiten, we define, for each object , a fraction using a formula proposed by Caldero and Keller. We show that the map taking to is a cluster character, i.e. that it satisfies a certain multiplication formula. We deduce that it induces a bijection, in the finite and the acyclic case, between the indecomposable rigid objects of the cluster...
We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space . The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on (resp. graded Loday structures on , sequences that we call Loday infinity structures on ). We prove a minimal model theorem for Loday infinity algebras and observe that the category contains the category as...
We develop a technique for the study of K-coalgebras and their representation types by applying a quiver technique and topologically pseudocompact modules over pseudocompact K-algebras in the sense of Gabriel [17], [19]. A definition of tame comodule type and wild comodule type for K-coalgebras over an algebraically closed field K is introduced. Tame and wild coalgebras are studied by means of their finite-dimensional subcoalgebras. A weak version of the tame-wild dichotomy theorem of Drozd [13]...
Let (A,α) and (B,β) be two Hom-Hopf algebras. We construct a new class of Hom-Hopf algebras: R-smash products . Moreover, necessary and sufficient conditions for to be a cobraided Hom-Hopf algebra are given.
Soit la première algèbre de Weyl sur . La codimension B-W d’un idéal à droite non nul de a été introduite par Yuri Berest et George Wilson. Nous montrons d’une part que cette codimension est invariante par la relation de Stafford : si , le corps de fractions de , et si , le groupe des -automorphismes de , sont tels que soit un idéal à droite de , alors . Nous relions d’autre part la codimension d’un idéal à la codimension de Gail Letzter-Makar Limanov, de , l’anneau des endomorphismes...
Currently displaying 541 –
560 of
3997