The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let , and be fixed non-negative integers. In this note, it is shown that if is left (right) -unital ring satisfying (, respectively) where , then is commutative. Moreover, commutativity of is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.
In this paper we investigate commutativity of ring with involution which admits a derivation satisfying certain algebraic identities on Jordan ideals of . Some related results for prime rings are also discussed. Finally, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.
Let be a prime ring, a nonzero ideal of , a derivation of and fixed positive integers. (i) If for all , then is commutative. (ii) If and for all , then is commutative. Moreover, we also examine the case when is a semiprime ring.
Let be a prime ring of char with a nonzero derivation and let be its noncentral Lie ideal. If for some fixed integers , for all , then satisfies , the standard identity in four variables.
We define polynomial -identities for comodule algebras over a Hopf algebra and establish general properties for the corresponding -ideals. In the case is a Taft algebra or the Hopf algebra , we exhibit a finite set of polynomial -identities which distinguish the Galois objects over up to isomorphism.
2000 Mathematics Subject Classification: 16R50, 16R10.The paper is a survey on involutions (anti-automorphisms of order two) of different kinds. Starting with the first systematic investigations
on involutions of central simple algebras due to Albert the author emphasizes on their basic properties, the conditions on their existence and their correspondence with structural characteristics of the algebras.
Focusing on matrix algebras a complete description of involutions of the
first kind on Mn(F)...
Let be a prime ring with center and be a nonzero ideal of . In this manuscript, we investigate the action of skew derivation of which acts as a homomorphism or an anti-homomorphism on . Moreover, we provide an example for semiprime case.
Currently displaying 21 –
40 of
56